Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

tau Subscript i Baseline right-parenthesis parallel-to 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals parallel-to f Subscript n Sub Subscript k Baseline left-parenthesis t right-parenthesis minus f Subscript n Sub Subscript k Baseline left-parenthesis tau Subscript i Baseline right-parenthesis parallel-to plus parallel-to f Subscript n Sub Subscript q Baseline left-parenthesis t right-parenthesis minus f Subscript n Sub Subscript q Baseline left-parenthesis tau Subscript i Baseline right-parenthesis parallel-to plus parallel-to f Subscript n Sub Subscript k Baseline left-parenthesis tau Subscript i Baseline right-parenthesis minus z Subscript i Baseline parallel-to 3rd Row 1st Column Blank 2nd Column plus parallel-to f Subscript n Sub Subscript q Subscript Baseline left-parenthesis tau Subscript i Baseline right-parenthesis minus z Subscript i Baseline parallel-to less-than StartFraction epsilon Over 4 EndFraction plus StartFraction epsilon Over 4 EndFraction plus StartFraction epsilon Over 4 EndFraction plus StartFraction epsilon Over 4 EndFraction equals epsilon period EndLayout"/>

      Hence, for every t element-of left-bracket a comma b right-bracket, left-brace f Subscript n Sub Subscript k Subscript Baseline left-parenthesis t right-parenthesis right-brace Subscript k element-of double-struck upper N Baseline subset-of upper X satisfies the Cauchy condition. Due to the fact that upper X is a complete space and because left-brace f Subscript n Sub Subscript k Subscript Baseline left-parenthesis t right-parenthesis right-brace Subscript k element-of double-struck upper N is a Cauchy sequence, the limit limit Underscript k right-arrow infinity Endscripts f Subscript n Sub Subscript k Baseline left-parenthesis t right-parenthesis exists.

      We conclude by considering f 0 left-parenthesis t right-parenthesis equals limit Underscript k right-arrow infinity Endscripts f Subscript n Sub Subscript k Subscript Baseline left-parenthesis t right-parenthesis period Then, f Subscript n Sub Subscript k Baseline right-arrow f 0 on left-bracket a comma b right-bracket, by Lemma 1.13. Hence, f 0 is the uniform limit of the subsequence left-brace f Subscript n Sub Subscript k Subscript Baseline right-brace in upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. Finally, any sequence left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N Baseline subset-of script í’œ admits a converging subsequence which, in turn, implies that script í’œ is a relatively compact set, and the proof is finished.

      We end this subsection by mentioning an Arzelà–Ascoli‐type theorem for regulated functions taking values in double-struck upper R Superscript n. A slightly different version of it can be found in [96].

      Corollary 1.19: The following conditions are equivalent:

      1 a set is relatively compact;

      2 the set is bounded, and there are an increasing continuous function , with , and a nondecreasing function such that, for every ,for

      3  is equiregulated, and for every , the set is bounded.

      We point out in [96, Theorem 2.17], item (ii), it is required that v is an increasing function. However, it is not difficult to see that if u is a nondecreasing function, then taking v left-parenthesis t right-parenthesis equals u left-parenthesis t right-parenthesis plus t yields v is an increasing function. Therefore, Corollary 1.19 follows as an immediate consequence of [96, Theorem 2.17].

      Definition 1.20: A bilinear triple (we write BT) is a set of three vector spaces upper E, upper F, and upper G, where upper F and upper G are normed spaces with a bilinear mapping script upper B colon upper E times upper F right-arrow upper G. For x element-of upper E and y element-of upper F, we write x y equals script upper B left-parenthesis x comma y right-parenthesis, and we denote the BT by left-parenthesis upper E comma upper F comma upper G right-parenthesis Subscript script upper B or simply by left-parenthesis upper E comma upper F comma upper G right-parenthesis. A topological BT is a BT left-parenthesis upper E comma upper F comma upper G right-parenthesis, where upper E is also a normed space and script upper B is continuous.

      Ifupper E and upper F are normed spaces, then we denote by upper L left-parenthesis upper E comma upper F right-parenthesis the space of all linear continuous functions from upper E to