Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

alt="upper F"/>. We write upper E prime equals upper L left-parenthesis upper E comma double-struck upper R right-parenthesis and upper L left-parenthesis upper E right-parenthesis equals upper L left-parenthesis upper E comma upper E right-parenthesis, where double-struck upper R denotes the real line. Next, we present examples, borrowed from [127], of bilinear triples.

      Example 1.21: Let upper X, upper Y, and upper Z denote Banach spaces. The following are BT:

      1 , , , and ;

      2 , , , and ;

      3 , , , and ;

      4 , and .

      Given a BT left-parenthesis upper E comma upper F comma upper G right-parenthesis Subscript script upper B, we define, for every x element-of upper E, a norm

parallel-to x parallel-to equals sup left-brace right-brace colon parallel-to parallel-to parallel-to parallel-to of script upper B script upper B left-parenthesis right-parenthesis comma x comma y colon less-than-or-slanted-equals less-than-or-slanted-equals parallel-to parallel-to parallel-to parallel-to y 1

      and we set upper E Subscript script upper B Baseline equals StartSet x element-of upper E colon parallel-to x parallel-to less-than infinity EndSet. Whenever the space upper E Subscript script upper B is endowed with the norm parallel-to dot parallel-to Subscript script upper B Baseline, we say that the topological BT left-parenthesis upper E Subscript script upper B Baseline comma upper F comma upper G right-parenthesis is associated with the BT left-parenthesis upper E comma upper F comma upper G right-parenthesis.

      Let upper E be a vector space and normal upper Gamma Subscript upper E be a set of seminorms defined on upper E such that p 1 comma ellipsis comma p Subscript m Baseline element-of normal upper Gamma Subscript upper E Baseline implies sup left-bracket p 1 comma ellipsis comma p Subscript m Baseline right-bracket element-of normal upper Gamma Subscript upper E Baseline period Then, normal upper Gamma Subscript upper E defines a topology on upper E, and the sets upper V Subscript p comma epsilon Baseline equals StartSet x element-of upper E colon p left-parenthesis x right-parenthesis less-than epsilon EndSet comma p element-of normal upper Gamma Subscript upper E Baseline comma epsilon greater-than 0 comma form a basis of neighborhoods of 0. The sets x 0 plus upper V Subscript p comma epsilon form a basis of the neighborhood of x 0 element-of upper E. Moreover, when endowed with this topology, upper E is called a locally convex space (see [127], p. 3, 4).

      Example 1.22: Every normed or seminormed space upper E is a locally convex space.

      For other examples of locally convex spaces, we refer to [110].

StartLayout 1st Row 1st Column Blank 2nd Column upper S upper B Subscript d Baseline left-parenthesis alpha right-parenthesis equals upper S upper B Subscript left-bracket a comma b right-bracket comma d Baseline left-parenthesis alpha right-parenthesis equals sup left-brace vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 yi colon y Subscript i Baseline element-of upper F comma vertical-bar vertical-bar vertical-bar vertical-bar yi less-than-or-slanted-equals 1 right-brace and 2nd Row 1st Column Blank 2nd Column upper S upper B left-parenthesis alpha right-parenthesis equals upper S upper B Subscript left-bracket a comma b right-bracket Baseline left-parenthesis alpha right-parenthesis equals sup left-brace right-brace colon times times upper S of BBd left-parenthesis right-parenthesis alpha colon element-of element-of dD left-bracket right-bracket comma a comma b period EndLayout

      Then, upper S upper B left-parenthesis alpha right-parenthesis is the script upper B‐variation of alpha on left-bracket a comma b right-bracket. We say that alpha is a function of bounded script upper Bvariation, whenever upper S upper B left-parenthesis alpha right-parenthesis less-than infinity. In this case, we write alpha element-of upper S upper B left-parenthesis left-bracket a comma b right-bracket comma upper E right-parenthesis.

      The following properties are not difficult to prove. See, e.g. [127, 4.1 and 4.2].

      1 (SB1) is a vector space and the mapping is a seminorm.

      2 (SB2)