Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_25c40c62-77b8-5594-805c-6252b7a22d4f.png" alt="epsilon greater-than 0"/>, there is a division d equals left-parenthesis t Subscript i Baseline right-parenthesis element-of upper D Subscript left-bracket a comma b right-bracket for which

parallel-to f Subscript k Baseline left-parenthesis t right-parenthesis minus f Subscript k Baseline left-parenthesis s right-parenthesis parallel-to less-than StartFraction epsilon Over 3 EndFraction comma

      for every k element-of double-struck upper N and t Subscript i minus 1 Baseline less-than s less-than t less-than t Subscript i, i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue.

      Take an arbitrary t element-of left-bracket a comma b right-bracket. Then, either t equals t Subscript i for some i, or t element-of left-parenthesis t Subscript i minus 1 Baseline comma t Subscript i Baseline right-parenthesis for some i. In the former case, parallel-to f Subscript k Baseline left-parenthesis t right-parenthesis minus f 0 left-parenthesis t right-parenthesis parallel-to less-than StartFraction epsilon Over 3 EndFraction period The other case yields

parallel-to f Subscript k Baseline left-parenthesis t right-parenthesis minus f 0 left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f Subscript k Baseline left-parenthesis t right-parenthesis minus f Subscript k Baseline left-parenthesis tau Subscript i Baseline right-parenthesis parallel-to plus parallel-to f Subscript k Baseline left-parenthesis tau Subscript i Baseline right-parenthesis minus f 0 left-parenthesis tau Subscript i Baseline right-parenthesis parallel-to plus parallel-to f 0 left-parenthesis tau Subscript i Baseline right-parenthesis minus f 0 left-parenthesis t right-parenthesis parallel-to less-than epsilon period

      Then, parallel-to f Subscript k Baseline minus f 0 parallel-to less-than epsilon and, therefore, f Subscript k Baseline right-arrow f 0 uniformly on left-bracket a comma b right-bracket.

      

      Lemma 1.14: Let be a sequence in . The following assertions hold:

      1 if the sequence of functions converges uniformly to as on , then , for , and , for ;

      2 if the sequence of functions converges pointwisely to as on and , for , and , for , where , then the sequence converges uniformly to as .

      Proof. We start by proving left-parenthesis normal i right-parenthesis. By hypothesis, the sequence left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N converges uniformly to f 0. Then, Moore–Osgood theorem (see, e.g., [19]) implies

limit Underscript k right-arrow infinity Endscripts limit Underscript s right-arrow t Superscript minus Baseline Endscripts f Subscript k Baseline left-parenthesis s right-parenthesis equals limit Underscript s right-arrow t Superscript minus Baseline Endscripts limit Underscript k right-arrow infinity Endscripts f Subscript k Baseline left-parenthesis s right-parenthesis comma t element-of left-parenthesis a comma b right-bracket period

      Therefore, f Subscript k Baseline left-parenthesis t Superscript minus Baseline right-parenthesis right-arrow f 0 left-parenthesis t Superscript minus Baseline right-parenthesis, for t element-of left-parenthesis a comma b right-bracket. In a similar way, one can show that f Subscript k Baseline left-parenthesis t Superscript plus Baseline right-parenthesis right-arrow f 0 left-parenthesis t Superscript plus Baseline right-parenthesis, for every t element-of left-bracket a comma b right-parenthesis.

      Now, we prove left-parenthesis i i right-parenthesis. It suffices to show that left-brace f Subscript k Baseline colon left-bracket a comma b right-bracket right-arrow upper X colon k element-of double-struck upper N 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=