Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

and every t element-of left-parenthesis a comma a plus delta right-bracket, we have

parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis a Superscript plus Baseline right-parenthesis parallel-to plus parallel-to f left-parenthesis a Superscript plus Baseline right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals 1 plus gamma Subscript a Baseline equals upper K Subscript left-parenthesis a plus delta right-parenthesis Baseline period

      Then, left-parenthesis a comma a plus delta right-bracket subset-of upper B.

      Let tau 0 equals sup upper B. The equiregulatedness of script í’œ implies that there exists delta prime greater-than 0 such that parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis tau 0 Superscript minus Baseline right-parenthesis parallel-to less-than-or-slanted-equals 1 comma for every f element-of script í’œ and t element-of left-bracket tau 0 minus delta Superscript prime Baseline comma tau 0 right-parenthesis. Take tau element-of upper B intersection left-bracket tau 0 minus delta Superscript prime Baseline comma tau 0 right-parenthesis. Thus, for every f element-of script í’œ,

parallel-to f left-parenthesis tau 0 Superscript minus Baseline right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f left-parenthesis tau 0 Superscript minus Baseline right-parenthesis minus f left-parenthesis tau right-parenthesis parallel-to plus parallel-to f left-parenthesis tau right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals 1 plus upper K Subscript tau Baseline comma t element-of left-parenthesis tau comma tau 0 right-parenthesis comma

      which, together with the hypotheses, yield

parallel-to f left-parenthesis tau 0 right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f left-parenthesis tau 0 right-parenthesis minus f left-parenthesis tau 0 Superscript minus Baseline right-parenthesis parallel-to plus parallel-to f left-parenthesis tau 0 Superscript minus Baseline right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals gamma Subscript tau 0 Baseline plus 1 plus upper K Subscript tau Baseline period

      Hence, tau 0 element-of upper B.

      Let tau 0 less-than b. Since script í’œ is equiregulated, there exists delta double-prime greater-than 0 such that, for every f element-of script í’œ, parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis tau 0 Superscript plus Baseline right-parenthesis parallel-to less-than-or-slanted-equals 1, for all t element-of left-parenthesis tau 0 comma tau 0 plus delta Superscript double-prime Baseline right-bracket period Therefore, for every f element-of script í’œ, we have

StartLayout 1st Row 1st Column parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to 2nd Column less-than-or-slanted-equals parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis tau 0 Superscript plus Baseline right-parenthesis parallel-to plus parallel-to f left-parenthesis tau 0 Superscript plus Baseline right-parenthesis minus f left-parenthesis tau 0 right-parenthesis parallel-to plus parallel-to f left-parenthesis tau 0 right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals 1 plus gamma Subscript tau 0 Baseline plus upper K Subscript tau 0 Baseline equals upper K Subscript left-parenthesis tau 0 plus delta Sub Superscript double-prime Subscript right-parenthesis Baseline comma EndLayout

      for t element-of left-parenthesis tau 0 comma tau 0 plus delta double-prime right-bracket, where upper K Subscript tau 0 Baseline equals gamma Subscript tau 0 Baseline plus 1 plus upper K Subscript tau. Note that tau 0 plus delta double-prime element-of upper B which contradicts the fact that tau 0 equals sup upper B. Hence, tau 0 equals b and the statement follows.

      1.1.3 Uniform Convergence

      This subsection brings a few results borrowed from [177]. In particular, Lemma 1.13 describes an interesting and useful property of equiregulated converging sequences of Banach space‐valued functions and it is used later in the proof of a version of Arzelà–Ascoli theorem for Banach space‐valued regulated functions.

      Lemma 1.13: Let left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N be a sequence of functions from left-bracket a comma b right-bracket to upper X. If the sequence left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N converges pointwisely to f 0 and is equiregulated, then it converges uniformly to f 0.

      Proof. By hypothesis, the sequence of functions left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N is equiregulated. Then, Theorem 1.11 yields that, for every