Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

right-brace"/> is an equiregulated set. Indeed, by Lemma 1.13, f Subscript k converges uniformly to f 0.

      Since the function f 0 is regulated, its lateral limits exist. Then, for every t 0 element-of left-bracket a comma b right-bracket and every epsilon greater-than 0, there is delta greater-than 0 such that

StartLayout 1st Row 1st Column parallel-to f 0 left-parenthesis t 0 Superscript minus Baseline right-parenthesis minus f 0 left-parenthesis t right-parenthesis parallel-to 2nd Column less-than epsilon comma for t 0 minus delta less-than-or-slanted-equals t less-than t 0 comma 2nd Row 1st Column parallel-to f 0 left-parenthesis t right-parenthesis minus f 0 left-parenthesis t 0 Superscript plus Baseline right-parenthesis parallel-to 2nd Column less-than epsilon comma for t 0 less-than t less-than-or-slanted-equals t 0 plus delta comma EndLayout

      for every t element-of left-bracket a comma b right-bracket.

      But the hypotheses say that we can find n 0 element-of double-struck upper N such that, for n greater-than-or-slanted-equals n 0, we have

parallel-to f Subscript n Baseline left-parenthesis t 0 minus delta right-parenthesis minus f 0 left-parenthesis t 0 minus delta right-parenthesis parallel-to less-than epsilon comma parallel-to f Subscript n Baseline left-parenthesis t 0 right-parenthesis minus f 0 left-parenthesis t 0 right-parenthesis parallel-to less-than epsilon comma parallel-to f Subscript n Baseline left-parenthesis t 0 Superscript plus Baseline right-parenthesis minus f 0 left-parenthesis t 0 Superscript plus Baseline right-parenthesis parallel-to less-than epsilon comma parallel-to f Subscript n Baseline left-parenthesis t 0 plus delta right-parenthesis minus f 0 left-parenthesis t 0 plus delta right-parenthesis parallel-to less-than epsilon and parallel-to f Subscript n Baseline left-parenthesis t 0 Superscript minus Baseline right-parenthesis minus f 0 left-parenthesis t 0 Superscript minus Baseline right-parenthesis parallel-to less-than epsilon period

      When t element-of left-bracket a comma b right-bracket satisfies t 0 minus delta less-than-or-slanted-equals t less-than t 0, we have, for every n greater-than-or-slanted-equals n 0,

parallel-to f Subscript n Baseline left-parenthesis t 0 Superscript minus Baseline right-parenthesis minus f Subscript n Baseline left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f Subscript n Baseline left-parenthesis t 0 Superscript minus Baseline right-parenthesis minus f 0 left-parenthesis t 0 Superscript minus Baseline right-parenthesis parallel-to plus parallel-to f 0 left-parenthesis t 0 Superscript minus Baseline right-parenthesis minus f 0 left-parenthesis t right-parenthesis parallel-to plus parallel-to f 0 left-parenthesis t right-parenthesis minus f Subscript n Baseline left-parenthesis t right-parenthesis parallel-to less-than 3 epsilon period parallel-to f Subscript n Baseline left-parenthesis t right-parenthesis minus f Subscript n Baseline left-parenthesis t 0 Superscript plus Baseline right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f Subscript n Baseline left-parenthesis t right-parenthesis minus f 0 left-parenthesis t right-parenthesis parallel-to plus parallel-to f 0 left-parenthesis t right-parenthesis minus f 0 left-parenthesis t 0 Superscript plus Baseline right-parenthesis parallel-to plus parallel-to f Subscript n Baseline left-parenthesis t 0 Superscript plus Baseline right-parenthesis minus f 0 left-parenthesis t 0 Superscript plus Baseline right-parenthesis parallel-to less-than 3 epsilon period

      But this yields the fact that left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N is an equiregulated sequence, and the proof is complete.

      The next lemma guarantees that, if a sequence of functions left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N is bounded by an equiregulated sequence of functions, then left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N is also equiregulated.

      Lemma 1.15: Let be a sequence of functions in . Suppose, for each , the function satisfies

       for every , where for each and the sequence is equiregulated. Then, the sequence is equiregulated.