Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

left-parenthesis t Superscript plus Baseline right-parenthesis"/> and alpha left-parenthesis t Superscript minus Baseline right-parenthesis also exist. We prove (i). The proof of (ii) follows analogously.

      Suppose s greater-than t. Then, property (V2) implies v a r Subscript a Superscript s Baseline left-parenthesis alpha right-parenthesis equals v a r Subscript a Superscript t Baseline left-parenthesis alpha right-parenthesis plus v a r Subscript t Superscript s Baseline left-parenthesis alpha right-parenthesis period Thus,

parallel-to alpha left-parenthesis s right-parenthesis minus alpha left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals v a r Subscript t Superscript s Baseline left-parenthesis alpha right-parenthesis equals v a r Subscript a Superscript s Baseline left-parenthesis alpha right-parenthesis minus v a r Subscript a Superscript t Baseline left-parenthesis alpha right-parenthesis

      and, hence, parallel-to alpha left-parenthesis t Superscript plus Baseline right-parenthesis minus alpha left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals v left-parenthesis t Superscript plus Baseline right-parenthesis minus v left-parenthesis t right-parenthesis period

      Conversely, for any given d element-of upper D Subscript left-bracket a comma t right-bracket, let v Subscript d Baseline left-parenthesis t right-parenthesis equals v a r Subscript d Baseline left-parenthesis alpha right-parenthesis. Then for every epsilon greater-than 0, there exists delta greater-than 0 such that v left-parenthesis t plus sigma right-parenthesis minus v left-parenthesis t Superscript plus Baseline right-parenthesis less-than-or-slanted-equals epsilon and parallel-to alpha left-parenthesis t plus sigma right-parenthesis minus alpha left-parenthesis t Superscript plus Baseline right-parenthesis parallel-to less-than-or-slanted-equals epsilon, and there exists a division d colon a equals t 0 less-than t 1 less-than midline-horizontal-ellipsis less-than t Subscript n Baseline equals t less-than t Subscript n plus 1 Baseline equals t plus sigma such that

v left-parenthesis t plus sigma right-parenthesis minus v Subscript d Baseline left-parenthesis t plus sigma right-parenthesis less-than-or-slanted-equals epsilon comma for all 0 less-than sigma less-than-or-slanted-equals delta period

      Then,

StartLayout 1st Row 1st Column v left-parenthesis t plus sigma right-parenthesis minus v left-parenthesis t right-parenthesis 2nd Column less-than-or-slanted-equals v Subscript d Baseline left-parenthesis t plus sigma right-parenthesis plus epsilon minus v Subscript d Baseline left-parenthesis t right-parenthesis equals parallel-to alpha left-parenthesis t plus sigma right-parenthesis minus alpha left-parenthesis t right-parenthesis parallel-to plus epsilon 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals parallel-to alpha left-parenthesis t Superscript plus Baseline right-parenthesis minus alpha left-parenthesis t right-parenthesis parallel-to plus 2 epsilon EndLayout

      and, hence, v left-parenthesis t Superscript plus Baseline right-parenthesis minus v left-parenthesis t right-parenthesis less-than-or-slanted-equals parallel-to alpha left-parenthesis t Superscript plus Baseline right-parenthesis minus alpha left-parenthesis t right-parenthesis parallel-to which completes the proof.

      Using the fact that parallel-to alpha left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals parallel-to alpha left-parenthesis a right-parenthesis parallel-to plus v a r Subscript a Superscript t Baseline left-parenthesis alpha right-parenthesis, the following corollary follows immediately from Lemma 1.30.

      Corollary 1.31: Let . Then the sets

StartSet t element-of left-bracket a comma b right-parenthesis colon parallel-to alpha left-parenthesis t Superscript plus Baseline right-parenthesis minus alpha left-parenthesis t right-parenthesis parallel-to greater-than-or-slanted-equals epsilon EndSet and StartSet t element-of left-parenthesis a comma b right-bracket colon parallel-to alpha left-parenthesis t right-parenthesis minus alpha left-parenthesis t Superscript minus Baseline right-parenthesis parallel-to greater-than-or-slanted-equals epsilon EndSet

       are finite for every .

      Thus, we have the next result which can be found in [126, Proposition I.2.10].

      Proposition 1.32: Let . Then the set of points of discontinuity of is countable.

      Let us define

upper B upper V Subscript a Superscript plus Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis equals left-brace alpha element-of upper B upper V Subscript a Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis colon alpha left-parenthesis t Superscript plus Baseline right-parenthesis equals alpha left-parenthesis t right-parenthesis comma t element-of left-parenthesis a comma b right-parenthesis right-brace period

      A proof that upper B upper V Subscript a Superscript plus Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis equipped with the variation norm, parallel-to dot parallel-to Subscript upper B upper V Baseline, is complete can be found in [126, Theorem I.2.11]. We reproduce it in the next theorem.

      Theorem 1.33: , equipped with the variation norm, is a Banach space.