Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

, the function is increasing.

      3 (SB3) Given and , .

      Definition 1.24: Consider the BT left-parenthesis upper L left-parenthesis upper X comma upper Y right-parenthesis comma upper X comma upper Y right-parenthesis. Then, instead of upper S upper B left-parenthesis alpha right-parenthesis and upper S upper B left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, we write simply upper S upper V left-parenthesis alpha right-parenthesis and upper S upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, respectively. Hence,

upper S upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis equals upper S upper B left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis

      and we call any element of upper S upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis a function of bounded semivariation.

      Definition 1.25: Given a function alpha colon left-bracket a comma b right-bracket right-arrow upper E, upper E a normed space, and a division d equals left-parenthesis t Subscript i Baseline right-parenthesis element-of upper D Subscript left-bracket a comma b right-bracket, we define

v a r Subscript d Baseline left-parenthesis alpha right-parenthesis equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1

      and the variation of alpha is given by

v a r left-parenthesis alpha right-parenthesis equals v a r Subscript a Superscript b Baseline left-parenthesis alpha right-parenthesis equals sup left-brace right-brace colon times times vard left-parenthesis right-parenthesis alpha colon element-of element-of dD left-bracket right-bracket comma a comma b period

      If v a r left-parenthesis alpha right-parenthesis less-than infinity, then alpha is called a function of bounded variation, in which case, we write alpha element-of upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper E right-parenthesis.

      It is not difficult to prove that upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper E comma upper F right-parenthesis right-parenthesis subset-of upper S upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper E comma upper F right-parenthesis right-parenthesis and upper S upper V left-parenthesis left-bracket a comma b right-bracket comma upper E Superscript prime Baseline right-parenthesis equals upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper E prime right-parenthesis.

      Moreover (see [127, Corollary I.3.4]), upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      The space upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is complete when equipped with the variation norm, parallel-to dot parallel-to Subscript upper B upper V Baseline, given by

parallel-to f parallel-to equals parallel-to f left-parenthesis a right-parenthesis parallel-to plus v a r Subscript a Superscript b Baseline left-parenthesis f right-parenthesis comma

      Remark 1.26: Consider a BT left-parenthesis upper E comma upper F comma upper G right-parenthesis. The definition of variation of a function alpha colon left-bracket a comma b right-bracket right-arrow upper E, where upper E is a normed space, can also be considered as a particular case of the script upper B‐variation of alpha in two different ways.

      1 Let , or and . By the definition of the norm in , we haveThus, when we consider the BT , we write and instead of and , respectively.

      2 Let , or and . By the Hahn–Banach Theorem, we haveand, hence,

      Definition 1.27: Given c element-of left-bracket a comma b right-bracket, we define the spaces

StartLayout 1st Row 1st Column Blank 2nd Column upper B upper V Subscript c Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis equals StartSet f element-of upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis colon f left-parenthesis c right-parenthesis equals 0 EndSet and 2nd Row 1st Column Blank 2nd Column upper S upper V Subscript c Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis equals StartSet alpha element-of upper S upper V left-parenthesis left-bracket 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=