Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

t comma t Superscript prime Baseline right-bracket subset-of left-parenthesis t Subscript j minus 1 Baseline comma t Subscript j Baseline right-parenthesis"/>, for j equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue. Thus, by (1.2), parallel-to f Subscript k Baseline left-parenthesis t Superscript prime Baseline right-parenthesis minus f Subscript k Baseline left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals epsilon comma for every k element-of double-struck upper N and every interval left-bracket t comma t Superscript prime Baseline right-bracket subset-of left-parenthesis t Subscript j minus 1 Baseline comma t Subscript j Baseline right-parenthesis, with j equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue. Finally, Theorem 1.11 ensures the fact that the sequence left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N is equiregulated.

      A clear outcome of Lemmas 1.13 and 1.15 follows below:

      

      Corollary 1.16: Let be a sequence of functions from to and suppose the function satisfies condition (1.2) for every and , where and the sequence is equiregulated. If the sequence converges pointwisely to a function , then it also converges uniformly to .

      1.1.4 Relatively Compact Sets

      In this subsection, we investigate an extension of the Arzelà–Ascoli theorem for regulated functions taking values in a general Banach space upper X with norm parallel-to dot parallel-to.

      Unlike the finite dimensional case, when we consider functions taking values in upper X, the relatively compactness of a set script í’œ subset-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis does not come out as a consequence of the equiregulatedness of the set script í’œ and the boundedness of the set StartSet f left-parenthesis t right-parenthesis colon f element-of script í’œ EndSet subset-of upper X, for each t element-of left-bracket a comma b right-bracket. In the following lines, we present an example, borrowed from [177] which illustrates this fact.

parallel-to z Subscript n Baseline parallel-to less-than-or-slanted-equals upper K and parallel-to z Subscript n Baseline minus z Subscript m Baseline parallel-to greater-than-or-slanted-equals epsilon comma

      for all n not-equals m and for some constant upper K greater-than 0. Hence, the set

upper B equals left-brace y Subscript n Baseline colon left-bracket 0 comma 1 right-bracket right-arrow upper X colon y Subscript n Baseline left-parenthesis t right-parenthesis equals t z Subscript n Baseline comma n element-of double-struck upper N right-brace

      is bounded, once left-brace z Subscript n Baseline right-brace Subscript n element-of double-struck upper N is bounded. Moreover, upper B is equiregulated and left-brace y Subscript n Baseline left-parenthesis 0 right-parenthesis right-brace Subscript n element-of double-struck upper N is relatively compact in upper X. On the other hand, upper B is not relatively compact in upper G left-parenthesis left-bracket 0 comma 1 right-bracket comma upper X right-parenthesis.

      At this point, it is important to say that, in order to guarantee that a set script í’œ subset-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is relatively compact, one needs an additional condition. It is clear that, if one assumes that, for each t element-of left-bracket a comma b right-bracket, the set StartSet f left-parenthesis t right-parenthesis colon f element-of script í’œ EndSet is relatively compact in upper X, then script í’œ becomes relatively compact in upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. This is precisely what the next result says, and we refer to it as the Arzelà–Ascoli theorem for Banach space‐valued regulated functions. Such important result can be found in [97] and [177] as well.

      

      Theorem 1.18: Suppose is equiregulated and, for every , is relatively compact in . Then, is relatively compact in .

      Proof. Take a sequence of functions left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N Baseline subset-of script í’œ. The set