Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

alt="script 풜"/> is equiregulated by hypothesis. Then, for every epsilon greater-than 0, there exists a division d equals left-parenthesis t Subscript i Baseline right-parenthesis element-of upper D Subscript left-bracket a comma b right-bracket fulfilling

parallel-to f Subscript n Baseline left-parenthesis t Superscript prime Baseline right-parenthesis minus f Subscript n Baseline left-parenthesis t right-parenthesis parallel-to less-than StartFraction epsilon Over 4 EndFraction comma

      for every n element-of double-struck upper N and t Subscript i minus 1 Baseline less-than t less-than t prime less-than t Subscript i, i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue.

      On the other hand, the sets left-brace f Subscript n Baseline left-parenthesis t Subscript i Baseline right-parenthesis right-brace Subscript n element-of double-struck upper N and left-brace f Subscript n Baseline left-parenthesis tau Subscript i Baseline right-parenthesis right-brace Subscript n element-of double-struck upper N are relatively compact in upper X for every i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue, where t Subscript i minus 1 Baseline less-than tau Subscript i Baseline less-than t Subscript i. Thus, there is a subsequence of indexes left-brace n Subscript k Baseline right-brace Subscript k element-of double-struck upper N Baseline subset-of double-struck upper N, with n Subscript k plus 1 Baseline greater-than n Subscript k, for which left-brace f Subscript n Sub Subscript k Subscript Baseline left-parenthesis t Subscript i Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N and left-brace f Subscript n Sub Subscript k Subscript Baseline left-parenthesis tau Subscript i Baseline right-parenthesis right-brace Subscript k element-of double-struck upper N are also relatively compact sets of upper X, for every i.

      This last statement implies that there exist left-brace y Subscript i Baseline colon i equals 0 comma 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue right-brace subset-of upper X and left-brace z Subscript i Baseline colon i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue right-brace subset-of upper X satisfying

y Subscript i Baseline equals limit Underscript k right-arrow infinity Endscripts f Subscript n Sub Subscript k Subscript Baseline left-parenthesis t Subscript i Baseline right-parenthesis and z Subscript i Baseline equals limit Underscript k right-arrow infinity Endscripts f Subscript n Sub Subscript k Subscript Baseline left-parenthesis tau Subscript i Baseline right-parenthesis period

      Thus, there exists upper N element-of double-struck upper N such that

vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffnk left-parenthesis right-parenthesis tiyi less-than StartFraction epsilon Over 4 EndFraction and vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffnk left-parenthesis right-parenthesis tau izi less-than StartFraction epsilon Over 4 EndFraction comma parallel-to f Subscript n Sub Subscript q Subscript Baseline left-parenthesis t Subscript i Baseline right-parenthesis minus y Subscript i Baseline parallel-to less-than StartFraction epsilon Over 4 EndFraction and parallel-to f Subscript n Sub Subscript q Subscript Baseline left-parenthesis tau Subscript i Baseline right-parenthesis minus z Subscript i Baseline parallel-to less-than StartFraction epsilon Over 4 EndFraction comma

      for i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue.

      Take t element-of left-bracket a comma b right-bracket and consider q element-of double-struck upper N such that q greater-than k. Therefore, either t equals t Subscript i, for some i element-of StartSet 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue EndSet, in which case, we have

parallel-to f Subscript n Sub Subscript k Subscript Baseline left-parenthesis t right-parenthesis minus f Subscript n Sub Subscript q Subscript Baseline left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f Subscript n Sub Subscript k Subscript Baseline left-parenthesis t Subscript i Baseline right-parenthesis minus y Subscript i Baseline parallel-to plus parallel-to f Subscript n Sub Subscript q Subscript Baseline left-parenthesis t Subscript i Baseline right-parenthesis minus y Subscript i Baseline parallel-to less-than StartFraction epsilon Over 2 EndFraction comma

      or t element-of left-parenthesis t Subscript i minus 1 Baseline comma t Subscript i Baseline right-parenthesis, for some i element-of StartSet 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue EndSet, in which case, we have

StartLayout 1st Row 1st Column parallel-to f Subscript n Sub Subscript k Baseline left-parenthesis t right-parenthesis minus f Subscript n Sub Subscript q Baseline left-parenthesis t right-parenthesis parallel-to 2nd Column less-than-or-slanted-equals parallel-to f Subscript n Sub Subscript k Baseline left-parenthesis t right-parenthesis minus f Subscript n Sub Subscript k Baseline left-parenthesis tau Subscript i Baseline right-parenthesis parallel-to plus parallel-to f Subscript n Sub Subscript k Baseline left-parenthesis tau Subscript i Baseline right-parenthesis minus f Subscript n Sub Subscript q Baseline left-parenthesis tau Subscript i Baseline right-parenthesis parallel-to plus parallel-to f Subscript n Sub Subscript q Baseline left-parenthesis t right-parenthesis minus f Subscript n Sub Subscript 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=