Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis colon alpha left-parenthesis c right-parenthesis equals 0 EndSet period EndLayout"/>

      Such spaces are complete when endowed, respectively, with the norm given by the variation v a r Subscript a Superscript b Baseline left-parenthesis f right-parenthesis and the norm given by the semivariation

upper S upper V left-parenthesis alpha right-parenthesis equals sup Underscript d element-of upper D Subscript left-bracket a comma b right-bracket Baseline Endscripts upper S upper V Subscript d Baseline left-parenthesis alpha right-parenthesis comma

      where

upper S upper V Subscript d Baseline left-parenthesis alpha right-parenthesis equals sup Underscript parallel-to x Subscript i Baseline parallel-to less-than-or-slanted-equals 1 Endscripts vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 xi comma

      and d colon a equals t 0 less-than t 1 less-than midline-horizontal-ellipsis less-than t Subscript StartAbsoluteValue d EndAbsoluteValue Baseline equals b is a division of left-bracket a comma b right-bracket.

      1 (V1) Every is bounded and , .

      2 (V2) Given and , we have .

      Remark 1.28: Note that property (V1) above implies parallel-to alpha parallel-to less-than-or-slanted-equals parallel-to alpha parallel-to for all alpha element-of upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      For more details about the spaces in Definition 1.27, the reader may want to consult [127]. The next results are borrowed from [126]. We include the proofs here since this reference is not easily available. Lemmas 1.29 and 1.30 below are, respectively, Theorems I.2.7 and I.2.8 from [126].

      Lemma 1.29: Let . Then,

      1 For all , there exists .

      2 For all , there exists .

      Proof. We only prove item (i), because item (ii) follows analogously. Consider an increasing sequence left-brace t Subscript n Baseline right-brace Subscript n element-of double-struck upper N in left-bracket a comma t right-parenthesis converging to t. Then,

sigma-summation Underscript i equals 1 Overscript n Endscripts parallel-to alpha left-parenthesis t Subscript i Baseline right-parenthesis minus alpha left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to less-than-or-slanted-equals v a r Subscript a Superscript t Baseline left-parenthesis alpha right-parenthesis comma

      for all n element-of double-struck upper N period Therefore, we have sigma-summation Underscript i equals 1 Overscript infinity Endscripts parallel-to alpha left-parenthesis t Subscript i Baseline right-parenthesis minus alpha left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to less-than-or-slanted-equals v a r Subscript a Superscript t Baseline left-parenthesis alpha right-parenthesis and, hence, sigma-summation Underscript i equals j Overscript infinity Endscripts parallel-to alpha left-parenthesis t Subscript i Baseline right-parenthesis minus alpha left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to right-arrow 0 comma as j right-arrow infinity period Thus, left-brace alpha left-parenthesis t Subscript n Baseline right-parenthesis right-brace Subscript n element-of double-struck upper N is a Cauchy sequence, since for any given epsilon greater-than 0, we have

parallel-to alpha left-parenthesis t Subscript m Baseline right-parenthesis minus alpha left-parenthesis t Subscript n Baseline right-parenthesis parallel-to less-than-or-slanted-equals sigma-summation Underscript i equals n plus 1 Overscript m Endscripts parallel-to alpha left-parenthesis t Subscript i Baseline right-parenthesis minus alpha left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to less-than-or-slanted-equals epsilon comma

      for sufficiently large m comma n. Finally, note that the limit alpha left-parenthesis t Superscript minus Baseline right-parenthesis of left-brace alpha left-parenthesis t Subscript n Baseline right-parenthesis right-brace Subscript n element-of double-struck upper N is independent of the choice of left-brace t Subscript n Baseline right-brace Subscript n element-of double-struck upper N, and we finish the proof.

      It comes from Lemma 1.29 that all functions x colon left-bracket a comma b right-bracket right-arrow upper X of bounded variation are also regulated functions (see, e.g. [127, Corollary 3.4]) which, in turn, are Darboux integrable [127, Theorem 3.6].

      Lemma 1.30: Let . For every , let . Then,

      1 , ;

      2 , .