Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

alt="parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis t Superscript prime Baseline right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis c overTilde Superscript minus Baseline right-parenthesis parallel-to plus parallel-to f left-parenthesis t Superscript prime Baseline right-parenthesis minus f left-parenthesis c overTilde Superscript minus Baseline right-parenthesis parallel-to less-than-or-slanted-equals epsilon comma"/>

      which implies c overTilde element-of upper B. Thus, we have two possibilities: either c overTilde equals b or c overTilde less-than b. In the first case, the proof is finished. In the second case, one can use a similar argument as the one we used before in order to find e element-of left-parenthesis c overTilde comma b right-bracket such that e element-of upper B, and this contradicts the fact that c overTilde equals sup upper B. Thus, c overTilde equals b, and we finish the proof of the sufficient condition.

      left-parenthesis left double arrow right-parenthesis Now, we prove the necessary condition. Given epsilon greater-than 0, there exists a division d prime element-of upper D Subscript left-bracket a comma b right-bracket, say, d prime colon a equals t 0 less-than t 1 less-than midline-horizontal-ellipsis less-than t Subscript StartAbsoluteValue d Sub Superscript prime Subscript EndAbsoluteValue Baseline equals b such that the inequality (1.1) is fulfilled, for every f element-of script í’œ and every left-bracket t comma t Superscript prime Baseline right-bracket subset-of left-parenthesis t Subscript j minus 1 Baseline comma t Subscript j Baseline right-parenthesis, with j equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d prime EndAbsoluteValue. Then, for every j equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d prime EndAbsoluteValue, take tau Subscript j Baseline element-of left-parenthesis t Subscript j minus 1 Baseline comma t Subscript j Baseline right-parenthesis and delta greater-than 0 such that left-parenthesis tau Subscript j Baseline minus delta comma tau Subscript j Baseline plus delta right-parenthesis subset-of left-parenthesis t Subscript j minus 1 Baseline comma t Subscript j Baseline right-parenthesis. Thus, (1.1) is satisfied, for all t comma t prime element-of left-parenthesis tau Subscript j Baseline minus delta comma tau Subscript j Baseline plus delta right-parenthesis. In particular, if either t equals tau Subscript j and t prime element-of left-parenthesis tau Subscript j Baseline minus delta comma tau Subscript j Baseline right-bracket, or t equals tau Subscript j and t prime element-of left-bracket tau Subscript j Baseline comma tau Subscript j Baseline plus delta right-parenthesis, then the inequality (1.1) holds. Thus, script í’œ is equiregulated.

      The next result describes an interesting property of equiregulated sets of upper G left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. Such result can be found in [97, Proposition 3.8].

      Theorem 1.12: Assume that a set is equiregulated and, for any , there is a number such that

parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis t Superscript minus Baseline right-parenthesis parallel-to less-than-or-slanted-equals gamma Subscript t Baseline comma t element-of left-parenthesis a comma b right-bracket comma and parallel-to f left-parenthesis t Superscript plus Baseline right-parenthesis minus f left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals gamma Subscript t Baseline comma t element-of left-bracket a comma b right-parenthesis period

       Then, there is a constant such that, for every ,

parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals upper K comma t element-of left-bracket a comma b right-bracket period