Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_b07cbf0a-311f-545c-a19b-c10bb6e04b00.png" alt="upper X"/> which are Lebesgue integrable with finite integral. See the appendix of this chapter. As a matter of fact, the Fundamental Theorem of Calculus for the Henstock integral (see Theorem 1.73) yields that f not-an-element-of upper H left-parenthesis left-bracket 0 comma 1 right-bracket comma upper X right-parenthesis. Optionally, one can verify that f not-an-element-of upper H left-parenthesis left-bracket 0 comma 1 right-bracket comma upper X right-parenthesis simply by noticing that

vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t greater-than-or-slanted-equals one half left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis comma

      for every left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket 0 comma 1 right-bracket.

      Claim. f element-of italic RMS left-parenthesis left-bracket 0 comma 1 right-bracket comma upper X right-parenthesis, that is, f is Riemann–McShane integrable (see the appendix of this chapter).

      Is is sufficient to prove that, given epsilon greater-than 0, we can find delta greater-than 0 such that for every delta-fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket 0 comma 1 right-bracket (the reader may want to check the notation upper S upper T upper D Subscript left-bracket a comma b right-bracket in the appendix of this chapter),

vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis 1 sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 less-than epsilon period

       If and , then . Therefore, and, hence,

       If and , then . Therefore,and we obtain

      Finally, we get

StartLayout 1st Row 1st Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis 1 sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 Subscript infinity Baseline equals 2nd Column sup Underscript 0 less-than-or-slanted-equals s less-than-or-slanted-equals 1 Endscripts StartAbsoluteValue ModifyingAbove f With tilde left-parenthesis 1 right-parenthesis left-parenthesis s right-parenthesis minus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts f left-parenthesis xi Subscript i Baseline right-parenthesis left-parenthesis s right-parenthesis left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis EndAbsoluteValue 2nd Row 1st Column equals 2nd Column sup Underscript 0 less-than-or-slanted-equals s less-than-or-slanted-equals 1 Endscripts StartAbsoluteValue s minus sigma-summation Underscript xi Subscript i Baseline less-than-or-slanted-equals s Endscripts left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis EndAbsoluteValue less-than delta less-than epsilon EndLayout

      and the Claim is proved.

      A less restrict version of the Fundamental Theorem of Calculus is stated next. A proof of it follows as in [108, Theorem 9.6].

      Theorem 1.75 (Fundamental Theorem of Calculus): Suppose is a continuous function such that there exists the derivative , for nearly everywhere on i.e. except for a countable subset of . Then, and

integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s equals upper F left-parenthesis t right-parenthesis minus upper F left-parenthesis a right-parenthesis comma t element-of left-bracket a comma b right-bracket period

      Now, we present a class of functions f colon left-bracket a comma b right-bracket right-arrow upper X, laying between absolute continuous and continuous functions, for which we can obtain a version of the Fundamental Theorem of Calculus for Henstock vector integrals. Let m denote the Lebesgue measure.