Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

rel="nofollow" href="#ulink_e7dac0e1-ff65-50d9-a86b-38d2467d8387">(1.7) hold.

      The next result is a Substitution Formula for Perron–Stieltjes integrals. A similar result holds for Riemann–Stieltjes integrals. For a proof of it, see [72, Theorem 11].

      Theorem 1.64: Consider functions , , and . Let

g left-parenthesis t right-parenthesis equals ModifyingAbove beta With tilde Subscript f Baseline left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline beta left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis comma t element-of left-bracket a comma b right-bracket period

       Then, if and only if , in which case, we have

      (1.8)

      (1.9)StartLayout 1st Row 1st Column Blank 2nd Column integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis beta left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d g left-parenthesis t right-parenthesis equals integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d left-bracket integral Subscript a Superscript t Baseline beta left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis right-bracket and 2nd Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar integral integral ab times times of alpha alpha left-parenthesis right-parenthesis t of beta beta left-parenthesis right-parenthesis t times times d of ff left-parenthesis right-parenthesis t less-than-or-slanted-equals left-bracket upper S upper V Subscript left-bracket a comma b right-bracket Baseline left-parenthesis alpha right-parenthesis plus vertical-bar vertical-bar vertical-bar vertical-bar of alpha alpha left-parenthesis right-parenthesis a right-bracket vertical-bar vertical-bar vertical-bar vertical-bar g Subscript infinity Baseline period EndLayout

      Corollary 1.65: Consider functions , , and , and define

g left-parenthesis t right-parenthesis equals ModifyingAbove beta With tilde Subscript f Baseline left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline beta left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis comma t element-of left-bracket a comma b right-bracket period

       Then, and equality (1.8) and inequality (1.9) hold.

      Another substitution formula for Perron–Stieltjes integrals is presented next. Its proof uses a very nice trick provided by Professor C. S. Hönig while advising M. Federson's Master Thesis. Such result is borrowed from [72, Theorem 12].

      Theorem 1.66: Consider functions , and , that is,

beta left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline d gamma left-parenthesis s right-parenthesis alpha left-parenthesis s right-parenthesis comma t element-of left-bracket a comma b right-bracket period

       Then, , if and only if and

      (1.10)integral Subscript a Superscript t Baseline d gamma left-parenthesis t right-parenthesis alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline d beta left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis period

      Proof. Since alpha element-of upper K Superscript gamma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper W right-parenthesis right-parenthesis, given epsilon greater-than 0, there exists a gauge delta on left-bracket a comma b right-bracket such that, for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d left-brace right-brace minus minus times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis ti of gamma gamma left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis xi i integral integral minus minus ti 1 ti times times times d of gamma gamma left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis t less-than epsilon period

      Taking approximated sums for integral Subscript a Superscript b Baseline d gamma left-parenthesis t right-parenthesis alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis and integral Subscript a Superscript b Baseline d beta left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis, we obtain

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis ti of gamma gamma left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis xi i sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of beta beta left-parenthesis right-parenthesis ti of beta beta left-parenthesis right-parenthesis t minus minus i 1 of ff left-parenthesis right-parenthesis xi i 2nd Row 1st Column Blank 2nd Column equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-brace right-brace minus minus times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis ti of gamma gamma left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis xi i integral integral t minus minus i 1 ti times times times d of gamma gamma left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis xi i period EndLayout

      But, if gamma Subscript i Baseline element-of upper L left-parenthesis upper X comma upper Y right-parenthesis and x Subscript i Baseline element-of upper X, then