Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

href="#fb3_img_img_9b3e8e46-2bc8-5209-a7e9-da40bde6d467.png" alt="f left-parenthesis t right-parenthesis element-of l 2 left-parenthesis double-struck upper N times double-struck upper N right-parenthesis"/>, with t element-of left-bracket 0 comma 1 right-bracket, such that limit Underscript n right-arrow infinity Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus fnf Subscript upper A Baseline equals 0.

      The next result follows from Theorem 1.80. A proof of it can be found in [75, Theorem 5].

      Theorem 1.85: Suppose is nonconstant on any nondegenerate subinterval of . Then, the mapping

alpha element-of bold upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis right-arrow from bar alpha overTilde Subscript f Baseline element-of upper C Subscript a Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis

       is an isometry, that is onto a dense subspace of .

      The next result, known as straddle Lemma, will be useful to prove that the space upper G left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis of regulated functions from left-bracket a comma b right-bracket to upper L left-parenthesis upper X comma upper Y right-parenthesis is dense in bold upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis in the Alexiewicz norm vertical-bar vertical-bar vertical-bar vertical-bar dot Subscript upper A comma f. For a proof of the straddle Lemma, the reader may want to consult [130, 3.4] or [119].

      Lemma 1.86 (Straddle Lemma): Suppose are functions such that is differentiable, with , for all . Then, given , there exists such that

vertical-bar vertical-bar vertical-bar vertical-bar minus minus minus of FF left-parenthesis right-parenthesis t of FF left-parenthesis right-parenthesis s times times of ff left-parenthesis right-parenthesis xi left-parenthesis right-parenthesis minus minus ts less-than epsilon left-parenthesis t minus s right-parenthesis comma

       whenever .

      Proposition 1.87: Suppose is differentiable and nonconstant on any nondegenerate subinterval of . Then, the Banach space is dense in under the Alexiewicz norm .

      Proof. Assume that alpha element-of bold upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis and let epsilon greater-than 0 be given. We need to find a function beta element-of upper G left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis such that vertical-bar vertical-bar vertical-bar vertical-bar minus minus beta alpha Subscript upper A comma f Baseline less-than epsilon, or equivalently,

      By Corollary 1.50, alpha overTilde Subscript f Baseline element-of upper C Subscript a Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis equals StartSet x element-of upper C left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis colon x left-parenthesis a right-parenthesis equals 0 EndSet. Let us denote by upper C Subscript a Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis the subspace of upper C Subscript a Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis of functions which are differentiable with continuous derivative. Hence, there is a function h element-of upper C Subscript a Superscript left-parenthesis 1 right-parenthesis Baseline left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis such that

      Let beta colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis be defined by beta left-parenthesis t right-parenthesis x equals h prime left-parenthesis t right-parenthesis, for all x element-of upper X such that x not-equals 0, and by beta left-parenthesis t right-parenthesis 0 equals 0. In particular, beta left-parenthesis t right-parenthesis f prime left-parenthesis t right-parenthesis equals h prime left-parenthesis t right-parenthesis whenever f prime left-parenthesis t right-parenthesis not-equals 0. Therefore, beta left-parenthesis t right-parenthesis f prime left-parenthesis t right-parenthesis equals h prime left-parenthesis t right-parenthesis for almost every t element-of left-bracket a comma b right-bracket, since f colon left-bracket a comma b right-bracket right-arrow upper X is differentiable and nonconstant