Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

equals left-bracket alpha left-parenthesis t Subscript i Baseline right-parenthesis minus alpha left-parenthesis xi Subscript i Baseline right-parenthesis right-bracket ModifyingAbove f With tilde left-parenthesis t Subscript i Baseline right-parenthesis"/> and beta Subscript t Sub Subscript i minus 1 Baseline equals left-bracket alpha left-parenthesis t Subscript i minus 1 Baseline right-parenthesis minus alpha left-parenthesis xi Subscript i Baseline right-parenthesis right-bracket ModifyingAbove f With tilde left-parenthesis t Subscript i minus 1 Baseline right-parenthesis, we have

StartLayout 1st Row 1st Column Blank 2nd Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis t separator d separator t equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus minus beta ti beta t minus minus i 1 integral integral t minus minus i 1 ti times times times d of alpha alpha left-parenthesis right-parenthesis t of ff tilde left-parenthesis right-parenthesis t 2nd Row 1st Column Blank 2nd Column equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus beta ti integral integral xi iti minus minus minus times times times d of alpha alpha left-parenthesis right-parenthesis t of ff tilde left-parenthesis right-parenthesis t beta t minus minus i 1 integral integral t minus minus i 1 xi i times times times d of alpha alpha left-parenthesis right-parenthesis t of ff tilde left-parenthesis right-parenthesis t 3rd Row 1st Column Blank 2nd Column equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral xi iti plus plus times times times d of alpha alpha left-parenthesis right-parenthesis t left-bracket right-bracket minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t integral integral t minus minus i 1 xi i times times times d of alpha alpha left-parenthesis right-parenthesis t left-bracket right-bracket minus minus of ff tilde left-parenthesis right-parenthesis t minus minus i 1 of ff tilde left-parenthesis right-parenthesis t less-than-or-slanted-equals epsilon v a r Subscript a Superscript b Baseline left-parenthesis alpha right-parenthesis comma EndLayout

      since for every t element-of left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket, we have

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t less-than-or-slanted-equals sup left-brace parallel-to ModifyingAbove f With tilde left-parenthesis t right-parenthesis minus ModifyingAbove f With tilde left-parenthesis s right-parenthesis parallel-to colon t comma s element-of left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-brace and 2nd Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis t minus minus i 1 of ff tilde left-parenthesis right-parenthesis t less-than-or-slanted-equals sup left-brace parallel-to ModifyingAbove f With tilde left-parenthesis t right-parenthesis minus ModifyingAbove f With tilde left-parenthesis s right-parenthesis parallel-to colon t comma s element-of left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-brace period EndLayout

      The proof is then complete.

      A proof of the next result, borrowed from [72, Theorem 8], follows from the definitions of the integrals.

      

      Theorem 1.59: Let and . If is bounded, then and

      (1.5)integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis d t equals integral Subscript a Superscript b Baseline d ModifyingAbove alpha With tilde left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis period

       If, in addition, , then .

      Corollary 1.60: Suppose with and . Then, and (1.5) holds.

      The next corollaries follow from Theorems 1.49 and 1.53.

      Corollary 1.61: Suppose with and . Then, , and we have

       and the following integration by parts formula holds

      The next two theorems generalize Corollary 1.62. For their proofs, the reader may want to consult [72].

      Theorem 1.63: Consider . If respectively, , then respectively, and both (1.6) and