Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

norm (see [5]) given by

parallel-to f parallel-to equals parallel-to f overTilde parallel-to equals sup Underscript t element-of left-bracket a comma b right-bracket Endscripts StartAbsoluteValue integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s EndAbsoluteValue

      is noncomplete (see [24], for instance). The same applies to Banach space-valued functions. Let us denote by bold upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis the space of all equivalence classes of functions f element-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, equipped with the Alexiewicz norm parallel-to f parallel-to equals parallel-to f overTilde parallel-to period The space bold upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is noncomplete (see [129]). However, bold upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis is ultrabornological (see [105]) and, therefore, barrelled. In particular, good functional analytic properties hold, such as the Banach–Steinhaus theorem and the Uniform Boundedness Principle (see, for instance, [142]). The same applies to the space bold upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis of equivalence classes of functions f element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, endowed with the Alexiewicz norm parallel-to f parallel-to equals parallel-to f overTilde parallel-to.

      The next example, borrowed from [73], exhibits a Cauchy sequence of Henstock integrable functions which is not convergent in the usual Alexiewicz norm, parallel-to dot parallel-to Subscript upper A Baseline.

      Example 1.84: Consider functions f Subscript n Baseline colon left-bracket 0 comma 1 right-bracket right-arrow l 2 left-parenthesis double-struck upper N times double-struck upper N right-parenthesis, n element-of double-struck upper N defined by f Subscript n Baseline equals sigma-summation Underscript i equals 1 Overscript n Endscripts g Subscript i, where g Subscript i Baseline left-parenthesis t right-parenthesis equals e Subscript i j, whenever StartFraction j minus 1 Over 2 Superscript i Baseline EndFraction less-than-or-slanted-equals t less-than StartFraction j Over 2 Superscript i Baseline EndFraction, j equals 1 comma 2 comma ellipsis comma 2 Superscript i, and g Subscript i Baseline left-parenthesis t right-parenthesis equals 0 otherwise.

      Hence,

vertical-bar vertical-bar vertical-bar vertical-bar g 1 Subscript upper A Baseline equals sup Underscript 0 less-than-or-slanted-equals t less-than-or-slanted-equals 1 Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral 0 tg 1 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar integral integral 01 g 1 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar plus plus 12 e 1112 e 12 Subscript 2 Baseline equals left-parenthesis one half right-parenthesis Superscript one half Baseline period

      Then,

integral Subscript 0 Superscript 1 Baseline g 2 equals integral Subscript 0 Superscript one fourth Baseline e 21 plus integral Subscript one fourth Superscript one half Baseline e 22 plus integral Subscript one half Superscript three fourths Baseline e 23 plus integral Subscript three fourths Superscript 1 Baseline e 24 equals one fourth left-parenthesis e 21 plus e 22 plus e 23 plus e 24 right-parenthesis

      and, hence,

vertical-bar vertical-bar vertical-bar vertical-bar g 2 Subscript upper A Baseline equals sup Underscript 0 less-than-or-slanted-equals t less-than-or-slanted-equals 1 Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral 0 tg 2 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar integral integral 01 g 2 Subscript 2 Baseline equals left-parenthesis 4 StartFraction 1 Over 4 squared EndFraction right-parenthesis Superscript one half Baseline equals left-parenthesis one fourth right-parenthesis Superscript one half Baseline period vertical-bar vertical-bar vertical-bar vertical-bar gi Subscript upper A Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals j 12 i integral integral minus minus j 12 ij 2 ie times times ij Subscript 2 Baseline equals left-bracket 2 Superscript i Baseline left-parenthesis StartFraction 1 Over 2 Superscript i Baseline EndFraction right-parenthesis squared right-bracket Superscript one half Baseline equals StartFraction 1 Over 2 Superscript StartFraction i Over 2 EndFraction Baseline EndFraction comma

      for every i element-of double-struck upper N. Then,

vertical-bar vertical-bar vertical-bar vertical-bar minus minus fnfm Subscript upper A Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i plus plus n 1 mgi Subscript upper A Baseline less-than-or-slanted-equals sigma-summation Underscript i equals n plus 1 Overscript m Endscripts StartFraction 1 Over 2 Superscript StartFraction i Over 2 EndFraction Baseline EndFraction

      which goes to zero for sufficiently large n comma m element-of double-struck upper N, with n greater-than m. Thus, left-brace f Subscript n Baseline right-brace Subscript n element-of double-struck upper N is a parallel-to dot parallel-to Subscript upper A Baseline-Cauchy sequence. On the other hand,

vertical-bar vertical-bar vertical-bar vertical-bar of ffn left-parenthesis right-parenthesis t Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar plus plus plus plus of gg 1 left-parenthesis right-parenthesis t of gg 2 left-parenthesis right-parenthesis t midline-horizontal-ellipsis of ggn left-parenthesis right-parenthesis t Subscript 2 Baseline equals StartRoot n EndRoot comma

      for every t element-of left-bracket 0 comma 1 right-bracket. Hence, there is no function