Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

t Subscript n Sub Subscript i Subscript minus 1 Baseline right-parenthesis parallel-to less-than StartFraction epsilon Over n 2 Superscript n Baseline EndFraction period"/>

      Consider a gauge delta of left-bracket a comma b right-bracket such that delta left-parenthesis xi right-parenthesis equals delta Subscript n Baseline left-parenthesis xi right-parenthesis, whenever xi element-of upper E Subscript n, and delta left-parenthesis xi right-parenthesis can assume any value in left-parenthesis 0 comma infinity right-parenthesis, otherwise. Then, for every delta-fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket, we have

StartLayout 1st Row 1st Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts parallel-to alpha left-parenthesis xi Subscript i Baseline right-parenthesis left-bracket f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket parallel-to less-than-or-slanted-equals 2nd Column sigma-summation Underscript n element-of double-struck upper N Endscripts sigma-summation Underscript xi Subscript i Baseline element-of upper E Subscript n Endscripts parallel-to alpha left-parenthesis xi Subscript i Baseline right-parenthesis parallel-to parallel-to f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to 2nd Row 1st Column less-than-or-slanted-equals 2nd Column sigma-summation Underscript n element-of double-struck upper N Endscripts n sigma-summation Underscript xi Subscript i Baseline element-of upper E Subscript n Baseline Endscripts parallel-to f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis parallel-to less-than epsilon EndLayout

      and we complete the proof.

      Given a function f colon left-bracket a comma b right-bracket right-arrow upper X, since upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis subset-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, Theorem 1.81 holds for upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis instead of upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis. Then, next proposition follows easily (see, also, [70, Corollary after Theorem 5]).

      Proposition 1.82: Suppose and . Assume, in addition, that is such that almost everywhere in . Then, and , for every . If, moreover, , then .

      In view of Proposition 1.82, we can define equivalence classes of nonabsolute vector integrable functions.

vertical-bar vertical-bar vertical-bar vertical-bar alpha Subscript upper A comma f Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar alpha tilde f Subscript infinity Baseline equals sup left-brace right-brace colon vertical-bar vertical-bar vertical-bar vertical-bar integral integral at of alpha alpha left-parenthesis right-parenthesis s times times d of ff left-parenthesis right-parenthesis s colon element-of element-of t left-bracket right-bracket comma a comma b period

      From Example 1.74, we know that although g comma f element-of upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis may belong to the same equivalence class, that is, integral Subscript a Superscript t Baseline g left-parenthesis s right-parenthesis d s equals integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s for all t element-of left-bracket a comma b right-bracket, one cannot conclude that g equals f almost everywhere in left-bracket a comma b right-bracket. It is known, however, that the space of all equivalence classes of real-valued Perron integrable functions f colon left-bracket a comma b right-bracket right-arrow double-struck upper R, equipped with the usual