Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

t minus minus i 1 integral integral t minus minus i 1 ti of alpha alpha left-parenthesis right-parenthesis t times times d of ff left-parenthesis right-parenthesis t less-than epsilon period"/>

      Taking approximated Riemannian‐type sums for the integrals integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis and integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis d beta left-parenthesis t right-parenthesis, we obtain

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times times of gamma gamma left-parenthesis right-parenthesis xi i of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of gamma gamma left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of beta beta left-parenthesis right-parenthesis ti of beta beta left-parenthesis right-parenthesis t minus minus i 1 2nd Row 1st Column Blank 2nd Column equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of gamma gamma left-parenthesis right-parenthesis xi i left-brace right-brace minus minus times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 integral integral minus minus times times ti 1 ti of alpha alpha left-parenthesis right-parenthesis t times times d of ff left-parenthesis right-parenthesis t equals upper I period EndLayout

      On the other hand, when gamma Subscript i Baseline element-of upper L left-parenthesis upper X comma upper Y right-parenthesis and x Subscript i Baseline element-of upper X, we have

sigma-summation Underscript i equals i Overscript n Endscripts gamma Subscript i Baseline x Subscript i Baseline equals sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis gamma Subscript j Baseline minus gamma Subscript j minus 1 Baseline right-parenthesis left-parenthesis sigma-summation Underscript i equals j Overscript n Endscripts x Subscript i Baseline right-parenthesis plus gamma 0 left-parenthesis sigma-summation Underscript i equals j Overscript n Endscripts x Subscript i Baseline right-parenthesis comma n element-of double-struck upper N period

      Then, taking x Subscript i Baseline equals alpha left-parenthesis xi Subscript i Baseline right-parenthesis left-bracket f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket minus integral Subscript t i minus 1 Superscript t Subscript i Baseline Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis, gamma Subscript i Baseline equals gamma left-parenthesis xi Subscript i Baseline right-parenthesis, gamma 0 equals gamma left-parenthesis a right-parenthesis, and n equals StartAbsoluteValue d EndAbsoluteValue, we get

upper I equals vertical-bar vertical-bar vertical-bar vertical-bar plus plus sigma-summation sigma-summation equals equals j 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis xi j of gamma gamma left-parenthesis right-parenthesis xi minus minus j 1 left-parenthesis right-parenthesis sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar dxi of gamma gamma 0 left-parenthesis right-parenthesis sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar dxi less-than-or-slanted-equals upper S upper V left-parenthesis gamma right-parenthesis epsilon plus parallel-to gamma left-parenthesis a right-parenthesis parallel-to epsilon comma

      because the Saks‐Henstock lemma (Lemma 1.45) yields vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar dxi less-than-or-slanted-equals epsilon, for every j element-of StartSet 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue EndSet.

      

      Corollary 1.69: Consider functions , , , and . Then, we have , , and Eq. (1.12) holds.

      Proof. Theorem 1.47, item (i), yields gamma element-of upper K Subscript g Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper W comma upper Y right-parenthesis right-parenthesis. Then, the statement follows from Theorem 1.68.

      The next result gives us an integration by parts formula for Perron–Stieltjes integrals. A proof of it can be found in [212, Theorem 13].

      Proposition 1.70: Suppose and or and . Then, the Perron–Stieltjes integrals and exist, and the following equality holds:

StartLayout 1st Row 1st Column integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis plus integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals 2nd Column alpha left-parenthesis b right-parenthesis f left-parenthesis b right-parenthesis minus alpha left-parenthesis a right-parenthesis f left-parenthesis a right-parenthesis 2nd Row 1st Column Blank 2nd Column minus sigma-summation Underscript a less-than-or-slanted-equals tau less-than b Endscripts normal upper Delta Superscript plus Baseline alpha left-parenthesis tau right-parenthesis normal upper Delta Superscript plus Baseline f left-parenthesis tau right-parenthesis plus sigma-summation Underscript a less-than-or-slanted-equals tau less-than b Endscripts normal upper Delta Superscript minus Baseline alpha left-parenthesis tau right-parenthesis normal upper Delta Superscript minus Baseline f left-parenthesis tau right-parenthesis comma EndLayout

       where , , , and

      As an immediate consequence of the previous proposition, we have the following result.

      Corollary 1.71: If and is a nondecreasing function, then the integral exists.

      We end this subsection by presenting a result, borrowed from [172] and [179, Theorem 5.4.5], which gives us a change of variable formula for Perron–Stieltjes integrals.

      

      Theorem 1.72: Suppose is increasing and