Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

alt="sigma-summation Underscript i equals 1 Overscript n Endscripts gamma Subscript i Baseline x Subscript i Baseline equals left-parenthesis sigma-summation Underscript i equals 1 Overscript n Endscripts gamma Subscript i Baseline right-parenthesis x 0 plus sigma-summation Underscript j equals 1 Overscript n Endscripts left-parenthesis sigma-summation Underscript i equals j Overscript n Endscripts gamma Subscript i Baseline right-parenthesis left-parenthesis x Subscript j Baseline minus x Subscript j minus 1 Baseline right-parenthesis comma n element-of double-struck upper N period"/> StartLayout 1st Row 1st Column upper I less-than-or-slanted-equals 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d left-brace right-brace minus minus times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis ti of gamma gamma left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis xi i integral integral minus minus ti 1 ti times times times d of gamma gamma left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis t vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis a 2nd Row 1st Column Blank 2nd Column plus sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar d gamma i vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 less-than epsilon vertical-bar vertical-bar f left-parenthesis a right-parenthesis vertical-bar vertical-bar plus epsilon v a r left-parenthesis f right-parenthesis comma EndLayout

      where we applied the Saks–Henstock lemma (Lemma 1.45) to obtain

vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar d gamma i equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals ij vertical-bar vertical-bar d left-brace right-brace minus minus times times left-bracket right-bracket minus minus of gamma gamma left-parenthesis right-parenthesis ti of gamma gamma left-parenthesis right-parenthesis t minus minus i 1 of alpha alpha left-parenthesis right-parenthesis xi i integral integral minus minus ti 1 ti times times times d of gamma gamma left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis t less-than-or-slanted-equals epsilon comma

      for every j equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue.

      A proof of the next proposition follows similarly as the proof of Theorem 1.66.

      

      Proposition 1.67: Let be any interval of the real line and , with . Consider functions and of locally bounded variation. Assume that is locally Perron–Stieltjes integrable with respect to , that is, the Perron–Stieltjes integral exists, for every compact interval . Assume, further, that , defined by

beta left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d v left-parenthesis s right-parenthesis comma t element-of upper J comma

       is also of locally bounded variation. Then, the Perron–Stieltjes integrals and exist and

      (1.11)integral Subscript a Superscript b Baseline d beta left-parenthesis r right-parenthesis f left-parenthesis r right-parenthesis equals integral Subscript a Superscript b Baseline alpha left-parenthesis r right-parenthesis f left-parenthesis r right-parenthesis d v left-parenthesis r right-parenthesis period

      Yet another substitution formula for Perron–Stieltjes integrals, borrowed from [72, Theorem 11], is brought up here and, again, another interesting trick provided by Professor Hönig is used in its proof. Such substitution formula will be used in Chapter 3 in order to guarantee the existence of some Perron–Stieltjes integrals. As a matter of fact, the corollary following Theorem 1.68 will do the job.

      Theorem 1.68: Consider functions , , , that is,

beta left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis comma for every t element-of left-bracket a comma b right-bracket

       and assume that . Thus, if and only if , in which case, we have

      (1.12)integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals integral Subscript a Superscript b Baseline gamma left-parenthesis t right-parenthesis d beta left-parenthesis t right-parenthesis period

      Proof. By hypothesis, alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper W right-parenthesis right-parenthesis. Therefore, for every epsilon greater-than 0, there is a gauge delta of left-bracket a comma b right-bracket such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma t Subscript i Baseline right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket, we have

vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d left-brace right-brace minus minus times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=