Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

d EndAbsoluteValue"/>, we have sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 less-than epsilon period

      If we denote by upper A upper C left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis the space of all absolutely continuous functions from left-bracket a comma b right-bracket to upper X, then it is not difficult to prove that

upper A upper C left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper S upper L left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper C left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis period

      In upper S upper L left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, we consider the usual supremum norm, parallel-to dot parallel-to Subscript infinity Baseline, induced by upper C left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      The next two versions of the Fundamental Theorem of Calculus for Henstock vector integrals, as described in Definition 1.41, are borrowed from [70, Theorems 1 and 2]. We use the term almost everywhere in the sense of the Lebesgue measure m.

      Theorem 1.77: If and are both differentiable and is such that for almost every , then and , that is,

integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis f prime left-parenthesis s right-parenthesis d s equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis comma t element-of left-bracket a comma b right-bracket period

      Theorem 1.78: If is differentiable and is bounded, then , and there exists the derivative for almost every , that is,

StartFraction d Over d t EndFraction left-bracket integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis right-bracket equals alpha left-parenthesis t right-parenthesis f prime left-parenthesis t right-parenthesis comma almost everywhere in left-bracket a comma b right-bracket period

      Corollary 1.79: Suppose is differentiable and nonconstant on any nondegenerate subinterval of and is bounded and such that . Then, almost everywhere in .

      From Corollary 1.50, we know that if f element-of upper C left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, then alpha overTilde Subscript f Baseline element-of upper C left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis. For the Henstock vector integral, we have the following analogue whose proof can be found in [70, Theorem 7].

      Theorem 1.80: If and , then we have .

      The next result is borrowed from [70, Theorem 5]. We reproduce its proof here.

      Theorem 1.81: Suppose and is such that almost everywhere on . Then, and , that is,

ModifyingAbove alpha With tilde Subscript f Baseline left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis equals 0 comma for every t element-of left-bracket a comma b right-bracket period

      Proof. Consider the sets

StartLayout 1st Row 1st Column Blank 2nd Column upper E equals StartSet t element-of double-struck upper R colon alpha left-parenthesis t right-parenthesis not-equals 0 EndSet and upper E Subscript n Baseline equals StartSet t element-of upper E colon n minus 1 less-than parallel-to alpha left-parenthesis t right-parenthesis parallel-to less-than-or-slanted-equals n EndSet comma 2nd Row 1st Column Blank 2nd Column for each n element-of double-struck upper N period EndLayout

      By hypothesis, m left-parenthesis upper E right-parenthesis equals 0, where m denotes the Lebesgue measure. Hence, m left-parenthesis upper E Subscript n Baseline right-parenthesis equals 0 for every n element-of double-struck upper N. In addition, f element-of upper S upper L left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. Then, for every n element-of double-struck upper N and every epsilon greater-than 0, there exists a gauge delta Subscript n on upper E Subscript n such that, for every delta Subscript n-fine tagged partial division d equals left-parenthesis xi Subscript n Sub Subscript i Subscript Baseline comma left-bracket t Subscript n Sub Subscript i Subscript minus 1 Baseline comma t Subscript n Sub Subscript i Subscript Baseline right-bracket right-parenthesis element-of italic upper T upper P upper D Subscript left-bracket a comma b right-bracket, with xi Subscript n Sub Subscript i Baseline element-of upper E Subscript n, for i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue, we have

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts parallel-to f left-parenthesis t Subscript n Sub Subscript i Subscript Baseline right-parenthesis minus f left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=