Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

tilde left-parenthesis a right-parenthesis minus integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis ModifyingAbove f With tilde left-parenthesis t right-parenthesis period"/>

      The next theorem is due to C. S. Hönig (see [129]), and it concerns multipliers for Perron–Stieltjes integrals.

      Theorem 1.57: Suppose and . Then, and Eqs. (1.3) and (1.4) hold.

      Since upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis subset-of upper S upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, it is immediate that if f element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and alpha element-of upper B upper V left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis, then alpha f element-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper Y right-parenthesis. As a matter of fact, the next result gives us information about the multipliers for the Henstock vector integral. See [72, Theorem 7].

      Theorem 1.58: Assume that and . Then, and equalities (1.3) and (1.4) hold.

      Proof. Since f element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, f overTilde is continuous by Theorem 1.49. Thus, given epsilon greater-than 0, there exists delta Superscript asterisk Baseline greater-than 0 such that

omega left-parenthesis f overTilde comma left-bracket c comma d right-bracket right-parenthesis equals sup left-brace parallel-to ModifyingAbove f With tilde left-parenthesis t right-parenthesis minus ModifyingAbove f With tilde left-parenthesis s right-parenthesis parallel-to colon t comma s element-of left-bracket c comma d right-bracket right-brace less-than epsilon comma

      whenever 0 less-than d minus c less-than delta Superscript asterisk, where left-bracket c comma d right-bracket subset-of left-bracket a comma b right-bracket. Moreover, there is a gauge delta on left-bracket a comma b right-bracket, with delta left-parenthesis t right-parenthesis less-than StartFraction delta Superscript asterisk Baseline Over 2 EndFraction for t element-of left-bracket a comma b right-bracket, such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t less-than epsilon period

      Thus,

StartLayout 1st Row 1st Column Blank 2nd Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times times of alpha alpha left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti times times of alpha alpha left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t separator d separator t 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis t separator d separator t 3rd Row 1st Column Blank 2nd Column less-than vertical-bar vertical-bar vertical-bar vertical-bar alpha Subscript infinity Baseline epsilon plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis t of alpha alpha left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis t separator d separator t period EndLayout integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis d t equals integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d ModifyingAbove f With tilde left-parenthesis t right-parenthesis equals alpha left-parenthesis b right-parenthesis ModifyingAbove f With tilde left-parenthesis b right-parenthesis minus alpha left-parenthesis a right-parenthesis ModifyingAbove f With tilde left-parenthesis a right-parenthesis minus integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis ModifyingAbove f With tilde left-parenthesis t right-parenthesis

      and a similar formula also holds for every subinterval contained in left-bracket a comma b right-bracket. Hence, for beta Subscript t Sub Subscript i Baseline 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=