Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

sigma-summation sigma-summation equals equals j 1 vertical-bar vertical-bar d times times of ff left-parenthesis right-parenthesis xi j left-parenthesis right-parenthesis minus minus tjt minus minus j 10 Subscript 2 Baseline equals vertical-bar vertical-bar vertical-bar vertical-bar sigma-summation sigma-summation equals equals j 1 vertical-bar vertical-bar d times times e xi j left-parenthesis right-parenthesis minus minus tjt minus minus j 1 Subscript 2 Baseline 2nd Row 1st Column Blank 2nd Column equals left-bracket sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts StartAbsoluteValue t Subscript j Baseline minus t Subscript j minus 1 Baseline EndAbsoluteValue squared right-bracket Superscript one half Baseline less-than delta Superscript one half Baseline left-bracket sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts left-parenthesis t Subscript j Baseline minus t Subscript j minus 1 Baseline right-parenthesis right-bracket Superscript one half Baseline less-than epsilon comma EndLayout"/>

      where we applied the Bessel equality. Thus, f element-of upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and f overTilde equals 0, since integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s equals 0 for every t element-of left-bracket a comma b right-bracket. On the other hand,

sigma-summation Underscript j equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi j left-parenthesis right-parenthesis minus minus tjt minus minus j 10 Subscript 2 Baseline equals b minus a

      for every left-parenthesis xi Subscript j Baseline comma left-bracket t Subscript j minus 1 Baseline comma t Subscript j Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket. Hence, f not-an-element-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      1.3.2 Basic Properties

      The first result we present in this subsection is known as the Saks–Henstock lemma, and it is useful in many situations. For a proof of it, see [210, Lemma 16], for instance. Similar results hold if we replace upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis by upper R Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis and also upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis by upper R Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Lemma 1.45 (Saks–Henstock Lemma): The following assertions hold.

      1 Let and . Given , let be a gauge on such that for every ‐fine ,Then, for every ‐fine , we have

      2 Let and Given , let be a gauge on such that for every ‐fine ,Then, for every ‐fine , we have

      Now, we define some important sets of functions.

      Definition 1.46: Let upper C Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis be the set of all functions alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis which are weakly continuous, that is, for every x element-of upper X, the function t element-of left-bracket a comma b right-bracket right-arrow from bar alpha left-parenthesis t right-parenthesis x element-of upper Y is continuous, and we denote by upper G Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis the set of all weakly regulated functions alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis, that is, for every x element-of upper X, the function t element-of left-bracket a comma b right-bracket right-arrow from bar alpha left-parenthesis t right-parenthesis x element-of upper Y is r egulated.

      Given alpha element-of upper G Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis and x element-of upper X, let us define

StartLayout 1st Row 1st Column Blank 2nd Column alpha left-parenthesis t plus right-parenthesis x equals left-parenthesis alpha x right-parenthesis left-parenthesis t Superscript plus Baseline right-parenthesis equals limit Underscript rho right-arrow 0 Superscript plus Baseline Endscripts left-parenthesis alpha x right-parenthesis left-parenthesis t plus rho right-parenthesis comma t element-of left-bracket a comma b right-parenthesis 2nd Row 1st Column Blank 2nd Column alpha left-parenthesis t minus right-parenthesis x equals left-parenthesis alpha x right-parenthesis left-parenthesis t Superscript minus Baseline right-parenthesis equals limit Underscript rho right-arrow 0 Superscript plus Baseline Endscripts left-parenthesis alpha x right-parenthesis left-parenthesis t minus rho right-parenthesis comma t element-of left-parenthesis a comma b right-bracket period EndLayout

      By the Banach–Steinhaus theorem, the limits alpha left-parenthesis t plus right-parenthesis and alpha left-parenthesis t minus right-parenthesis exist and belong to upper L left-parenthesis upper X comma upper Y right-parenthesis. Then, by the Uniform Boundedness Principle, upper G Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis is a Banach space when equipped with the usual supremum norm. It is also clear that