Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

href="#fb3_img_img_8afa513f-85fe-577d-968c-2315adec5a1c.png" alt="upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis"/>) which does not belong to upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, showing that, in the infinite dimensional‐valued case, upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis may be a proper subset of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      

      Example 1.44: Let upper I subset-of double-struck upper R be an arbitrary set and let upper E be a normed space. A family left-brace x Subscript i Baseline right-brace Subscript i element-of upper I of elements of upper E is summable with sum x element-of upper E (we write sigma-summation Underscript i element-of upper I Endscripts x Subscript i Baseline equals x), if for every epsilon greater-than 0, there is a finite subset upper F Subscript epsilon Baseline subset-of upper I such that for every finite subset upper F subset-of upper I with upper F superset-of upper F Subscript epsilon, parallel-to x minus sigma-summation Underscript i element-of upper F Endscripts x Subscript i Baseline parallel-to less-than epsilon period

      Let l 2 left-parenthesis upper I right-parenthesis denote the set of all families left-brace x Subscript i Baseline right-brace Subscript i element-of upper I, x Subscript i Baseline element-of double-struck upper R, such that the family left-brace StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared right-brace Subscript i element-of upper I is summable, that is,

l 2 left-parenthesis upper I right-parenthesis equals StartSet x equals left-brace x Subscript i Baseline right-brace Subscript i element-of upper I Baseline comma x Subscript i Baseline element-of double-struck upper R colon sigma-summation Underscript i element-of upper I Endscripts StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared less-than infinity EndSet period

      In what follows, we will use the the Bessel equality given as

parallel-to x parallel-to equals sigma-summation Underscript i element-of upper I Endscripts StartAbsoluteValue left pointing angle x Subscript i Baseline comma e Subscript i Baseline right pointing angle EndAbsoluteValue squared equals sigma-summation Underscript i element-of upper I Endscripts StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared comma x element-of l 2 left-parenthesis upper I right-parenthesis period

      Let left-bracket a comma b right-bracket be a nondegenerate closed interval of double-struck upper R and upper X equals l 2 left-parenthesis left-bracket a comma b right-bracket right-parenthesis be equipped with the norm

x right-arrow from bar vertical-bar vertical-bar vertical-bar vertical-bar x Subscript 2 Baseline equals left-parenthesis sigma-summation Underscript i element-of left-bracket a comma b right-bracket Endscripts StartAbsoluteValue x Subscript i Baseline EndAbsoluteValue squared right-parenthesis Superscript 1 slash 2 Baseline period

      Consider a function f colon left-bracket a comma b right-bracket right-arrow upper X given by f left-parenthesis t right-parenthesis equals e Subscript t, t element-of left-bracket a comma b right-bracket. Given epsilon greater-than 0, there exists delta greater-than 0, with delta Superscript one half Baseline less-than StartFraction epsilon Over left-parenthesis b minus a right-parenthesis Superscript one half Baseline EndFraction, such that for every left-parenthesis StartFraction delta Over 2 EndFraction right-parenthesis‐fine d equals left-parenthesis xi Subscript j Baseline comma left-bracket t Subscript j minus 1 Baseline comma t Subscript j Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=