Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis subset-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis period"/> In order to prove that upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis subset-of upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis, it is enough to write the usual Riemannian‐type sum as two sums (with the positive and negative parts of the sum):

StartLayout 1st Row 1st Column Blank 2nd Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts StartAbsoluteValue alpha left-parenthesis tau Subscript i Baseline right-parenthesis left-bracket f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket minus left-bracket ModifyingAbove alpha With tilde left-parenthesis t Subscript i Baseline right-parenthesis minus ModifyingAbove alpha With tilde left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket EndAbsoluteValue 2nd Row 1st Column Blank 2nd Column equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts left-brace alpha left-parenthesis tau Subscript i Baseline right-parenthesis left-bracket f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket minus left-bracket ModifyingAbove alpha With tilde left-parenthesis t Subscript i Baseline right-parenthesis minus ModifyingAbove alpha With tilde left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket right-brace Subscript plus Baseline 3rd Row 1st Column Blank 2nd Column plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts left-brace alpha left-parenthesis tau Subscript i Baseline right-parenthesis left-bracket f left-parenthesis t Subscript i Baseline right-parenthesis minus f left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket minus left-bracket ModifyingAbove alpha With tilde left-parenthesis t Subscript i Baseline right-parenthesis minus ModifyingAbove alpha With tilde left-parenthesis t Subscript i minus 1 Baseline right-parenthesis right-bracket right-brace Subscript minus 4th Row 1st Column Blank 2nd Column less-than-or-slanted-equals epsilon plus epsilon equals 2 epsilon comma EndLayout

      for every delta‐fine d equals left-parenthesis tau Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket corresponding to a given epsilon greater-than 0.

integral Subscript a Superscript t Baseline alpha left-parenthesis s right-parenthesis d f left-parenthesis s right-parenthesis comma and integral Subscript a Superscript t Baseline d alpha left-parenthesis s right-parenthesis f left-parenthesis s right-parenthesis comma t element-of left-bracket a comma b right-bracket comma

      as Perron–Stieltjes integrals, where alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis and f colon left-bracket a comma b right-bracket right-arrow upper X.

      As it should be expected, the above integrals are linear and additive over nonoverlapping intervals. These facts will be put aside for a while, because in Chapter 2 they will be proved for the more general form of the Kurzweil integral. In the meantime, we present a simple example of a function which is Riemann improper integrable (and, hence, also Perron integrable, due to Theorem 2.9), but it is not Lebesgue integrable (because it is not absolutely integrable).

      Example 1.43: Let f colon left-bracket 0 comma infinity right-parenthesis right-arrow double-struck upper R be given by f left-parenthesis t right-parenthesis equals StartFraction sine t Over t EndFraction, for t element-of left-parenthesis 0 comma infinity right-parenthesis, and f left-parenthesis 0 right-parenthesis equals upper L, for some upper L element-of double-struck upper R period Then, it is not difficult to prove that limit Underscript t right-arrow infinity Endscripts integral Subscript 0 Superscript t Baseline f left-parenthesis s right-parenthesis d s exists, but integral Subscript 0 Superscript infinity Baseline StartAbsoluteValue StartFraction sine s Over s EndFraction EndAbsoluteValue d s equals infinity, once

integral Subscript 0 Superscript infinity Baseline StartAbsoluteValue StartFraction sine s Over s EndFraction EndAbsoluteValue d s greater-than-or-slanted-equals sigma-summation Underscript k equals 1 Overscript n Endscripts integral Subscript left-parenthesis k minus 1 right-parenthesis pi Superscript k pi Baseline StartAbsoluteValue StartFraction sine s Over s EndFraction EndAbsoluteValue d s greater-than-or-slanted-equals sigma-summation Underscript k equals 1 Overscript n Endscripts StartFraction 1 Over k pi EndFraction integral Subscript left-parenthesis k minus 1 right-parenthesis pi Superscript k pi Baseline StartAbsoluteValue sine s EndAbsoluteValue d s equals StartFraction 2 Over pi EndFraction sigma-summation Underscript k equals 1 Overscript n Endscripts StartFraction 1 Over k EndFraction period

      Another example is also needed at this point. Borrowed from [73, example 2.1], the example below exhibits a function f element-of upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis minus upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis (that is, f belongs to upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, but not to upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis), satisfying f overTilde equals 0. However, f left-parenthesis t right-parenthesis not-equals 0 for almost every t element-of left-bracket a comma b right-bracket. Thus, such a function is also an element of upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis (because it belongs to