Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

C Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis subset-of upper G Superscript sigma Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis period"/>

      The next result concerns the existence of Perron–Stieltjes integrals. A proof of its item (i) can be found in [210, Theorem 15]. A proof of item (ii) follows similarly as the proof of item (i). See also [212, Proposition 7].

      Theorem 1.47: The following assertions hold.

      1 If and , then .

      2 If and , then we have .

      

      Corollary 1.48: The following assertions hold.

      1 If and , then the Perron–Stieltjes integral exists, and we haveSimilarly, if and is nondecreasing, then

      2 If and , then the Perron–Stieltjes integral exists, and we have

      The next result, borrowed from [74, Theorem 1.2], gives us conditions for indefinite Perron–Stieltjes integrals to be regulated functions.

      Theorem 1.49: The following assertions hold:

      1 if and , then ;

      2 if and , then .

      Proof. We prove (i). Item (ii) follows similarly. For item (i), it is enough to show that

ModifyingAbove f With tilde Superscript alpha Baseline left-parenthesis xi Superscript plus Baseline right-parenthesis minus ModifyingAbove f With tilde Superscript alpha Baseline left-parenthesis xi right-parenthesis equals left-bracket alpha left-parenthesis xi plus right-parenthesis minus alpha left-parenthesis xi right-parenthesis right-bracket f left-parenthesis xi right-parenthesis comma xi element-of left-bracket a comma b right-parenthesis comma

      because, in this case, the equality

ModifyingAbove f With tilde Superscript alpha Baseline left-parenthesis xi right-parenthesis minus ModifyingAbove f With tilde Superscript alpha Baseline left-parenthesis xi Superscript minus Baseline right-parenthesis equals left-bracket alpha left-parenthesis xi right-parenthesis minus alpha left-parenthesis xi minus right-parenthesis right-bracket f left-parenthesis xi right-parenthesis comma xi element-of left-parenthesis a comma b right-bracket

      follows in an analogous way. By hypothesis, f element-of upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. Hence, given epsilon greater-than 0, there is a gauge delta on left-bracket a comma b right-bracket such that for every delta‐fine division d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 of ff left-parenthesis right-parenthesis xi i integral integral ab times times times d of alpha alpha left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t less-than StartFraction epsilon Over 2 EndFraction period vertical-bar vertical-bar vertical-bar vertical-bar times times left-bracket right-bracket minus minus times times alpha left-parenthesis right-parenthesis plus plus xi rho of alpha alpha left-parenthesis right-parenthesis plus plus Ì‚ xi of ff left-parenthesis right-parenthesis xi less-than StartFraction epsilon Over 2 EndFraction comma for 0 less-than rho less-than mu period

      If delta left-parenthesis xi right-parenthesis less-than mu and 0 less-than rho less-than delta left-parenthesis xi right-parenthesis, then by the Saks–Henstock lemma (Lemma 1.45)

vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-bracket right-bracket minus minus times times alpha left-parenthesis right-parenthesis plus plus xi rho of alpha alpha left-parenthesis right-parenthesis xi of ff left-parenthesis right-parenthesis xi integral integral xi plus plus xi rho times times times d of alpha alpha left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t less-than-or-slanted-equals StartFraction epsilon Over 2 EndFraction period

      Thus,

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus minus of ff tilde alpha left-parenthesis right-parenthesis xi plus of ff tilde alpha left-parenthesis right-parenthesis xi times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis plus plus Ì‚ xi of alpha alpha left-parenthesis right-parenthesis xi of ff left-parenthesis right-parenthesis xi 2nd Row 1st Column Blank 2nd Column equals vertical-bar vertical-bar vertical-bar vertical-bar integral integral xi plus plus xi rho minus minus times times times d of alpha alpha left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis plus plus Ì‚ xi of alpha alpha left-parenthesis right-parenthesis xi of ff left-parenthesis right-parenthesis xi 3rd Row 1st Column Blank 2nd Column less-than-or-slanted-equals vertical-bar vertical-bar vertical-bar vertical-bar integral integral xi plus plus xi rho minus minus times times times d of alpha alpha left-parenthesis right-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=