Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

sums concerning delta‐fine tagged divisions of an interval left-bracket a comma b right-bracket, we bring up an important result which guarantees the existence of a delta‐fine tagged division for a given gauge delta. This result is known as Cousin Lemma, and a proof of it can be found in [120, Theorem 4.1].

      

      Lemma 1.36 (Cousin Lemma): Given a gauge of , there exists a ‐fine tagged division of .

      Definition 1.37: We say that alpha is Kurzweil fintegrable (or Kurzweil integrable with respect to f), if there exists upper I element-of upper Y such that for every epsilon greater-than 0, there is a gauge delta on left-bracket a comma b right-bracket such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of alpha alpha left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis ti of ff left-parenthesis right-parenthesis t minus minus i 1 upper I less-than epsilon period

      In this case, we write upper I equals integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis and alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis.

      Analogously, we define the Kurzweil integral of f colon left-bracket a comma b right-bracket right-arrow upper X with respect to a function alpha colon left-bracket a comma b right-bracket right-arrow upper L left-parenthesis upper X comma upper Y right-parenthesis.

vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 of ff left-parenthesis right-parenthesis xi iI less-than epsilon comma

      whenever d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket is delta‐fine. In this case, we write upper I equals integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis and f element-of upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Suppose the Kurzweil vector integral integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis exists. Then, we define

integral Subscript b Superscript a Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis equals minus integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis period

      An analogous consideration holds for the Kurzweil vector integral integral Subscript a Superscript b Baseline d alpha left-parenthesis t right-parenthesis f left-parenthesis t right-parenthesis.

      If the gauge delta in the definition of alpha element-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis is a constant function, then we obtain the Riemann–Stieltjes integral integral Subscript a Superscript b Baseline alpha left-parenthesis t right-parenthesis d f left-parenthesis t right-parenthesis, and we write alpha element-of upper R Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis. Similarly, when we consider only constant gauges delta in the definition of f element-of upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, we obtain the Riemann–Stieltjes integral integral Subscript a Superscript b Baseline d alpha left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=