Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

infinity right-parenthesis comma upper X right-parenthesis"/> with the space upper B left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis of bounded functions from left-bracket t 0 comma infinity right-parenthesis to upper X, in which case, we write upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis and equip such space with the supremum norm,

f element-of upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis right-arrow from bar parallel-to f parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to f left-parenthesis t right-parenthesis parallel-to element-of double-struck upper R Subscript plus Baseline comma

      where double-struck upper R Subscript plus Baseline equals left-bracket 0 comma infinity right-parenthesis. Alternatively, we can consider a subspace upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis of upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis formed by all functions f colon left-bracket t 0 comma infinity right-parenthesis right-arrow upper X such that

sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline parallel-to f left-parenthesis t right-parenthesis parallel-to less-than infinity period

      The next result shows that upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis is a Banach space with respect to a special norm. This result, whose proof follows ideas similar to those of [124, 220], will be largely used in. Chapters 5 and 8

      

      Proposition 1.9: The space , equipped with the norm

parallel-to f parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline parallel-to f left-parenthesis t right-parenthesis parallel-to comma f element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis comma

       is a Banach space.

      Proof. Let upper T colon upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis right-arrow upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis be the linear mapping defined by

left-parenthesis upper T y right-parenthesis left-parenthesis t right-parenthesis equals e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline y left-parenthesis t right-parenthesis comma

      for all y element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis and t element-of left-bracket t 0 comma infinity right-parenthesis.

      Claim. upper T is an isometric isomorphism. Indeed, upper T is an isometry because

parallel-to upper T left-parenthesis y right-parenthesis parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to left-parenthesis upper T y right-parenthesis left-parenthesis t right-parenthesis parallel-to equals sup Underscript t element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to y left-parenthesis t right-parenthesis parallel-to e Superscript minus left-parenthesis t minus t 0 right-parenthesis Baseline equals parallel-to y parallel-to comma

      for all y element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis. Moreover, if y element-of upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis, then u colon left-bracket t 0 comma infinity right-parenthesis right-arrow upper X defined by

u left-parenthesis t right-parenthesis equals e Superscript t minus t 0 Baseline y left-parenthesis t right-parenthesis comma for all t element-of left-bracket t 0 comma infinity right-parenthesis

      is such that upper T y equals u and u element-of upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis, since

sup Underscript s element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to u left-parenthesis s right-parenthesis parallel-to e Superscript minus left-parenthesis s minus t 0 right-parenthesis Baseline equals sup Underscript s element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to y left-parenthesis s right-parenthesis parallel-to e Superscript s minus t 0 Baseline e Superscript minus left-parenthesis s minus t 0 right-parenthesis Baseline equals sup Underscript s element-of left-bracket t 0 comma infinity right-parenthesis Endscripts parallel-to y left-parenthesis s right-parenthesis parallel-to less-than infinity period

      Therefore, upper T is onto and the Claim is proved.

      Once upper T is an isometric isomorphism and upper B upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis is a Banach space, we conclude that upper G 0 left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis is also a Banach space.

      1.1.2