Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

rel="nofollow" href="#fb3_img_img_06cf990f-7319-5d6c-a2c4-6a1683f21a37.png" alt="h left-parenthesis t right-parenthesis equals Start 2 By 2 Matrix 1st Row 1st Column f left-parenthesis tau Subscript i Baseline right-parenthesis comma 2nd Column t element-of left-parenthesis t Subscript i minus 1 Baseline comma t Subscript i Baseline right-parenthesis comma i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue comma 2nd Row 1st Column f left-parenthesis t Subscript i Baseline right-parenthesis comma 2nd Column t equals t Subscript i Baseline comma i equals 0 comma 1 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue period EndMatrix"/>

      Hence,

.

      The next result, borrowed from [7, Lemma 2.3], specifies the supremum of a function

.

      

      Proposition 1.6: Let . Then where either , for some , or , for some , or for some .

      Proof. Let

. Since
,
. By the definition of the supremum, for all
, one can choose
such that
which implies

, there exists a subsequence
such that
as
. Since
is regulated,
belongs to StartSet parallel-to f left-parenthesis sigma right-parenthesis parallel-to comma parallel-to f left-parenthesis sigma Superscript minus Baseline right-parenthesis parallel-to comma parallel-to f left-parenthesis sigma Superscript plus Baseline right-parenthesis parallel-to EndSet and the proof is complete.

      The composition of regulated functions may not be a regulated function as shown by the next example proposed by Dieudonné as an exercise. See, for instance, [58, Problem 2, p. 140].

      

      Example 1.7: Consider, for instance, functions f comma g colon left-bracket 0 comma 1 right-bracket right-arrow double-struck upper R given by f left-parenthesis t right-parenthesis equals t sine StartFraction 1 Over t EndFraction, for t element-of left-parenthesis 0 comma 1 right-bracket, f left-parenthesis 0 right-parenthesis equals 0 and g left-parenthesis t right-parenthesis equals sgn t, that is, g is the sign function. Both f and g belong to upper G left-parenthesis left-bracket 0 comma 1 right-bracket comma double-struck upper R right-parenthesis. However, the composition g ring f does not.

      The next result, borrowed from [209, Theorem 10.11], gives us an interesting property of left‐continuous regulated functions. Such result will be used in Chapters 8 and 11. We state it here without any proof.

      

      Proposition 1.8: Let . If for every , there exists such that for every , we have , then

f left-parenthesis s right-parenthesis minus f left-parenthesis a right-parenthesis less-than-or-slanted-equals g left-parenthesis s right-parenthesis minus g left-parenthesis a right-parenthesis comma s element-of left-bracket a comma b right-bracket period

      We end this first section by introducing some notation for certain spaces of regulated functions defined on unbounded intervals of the real line double-struck upper R. Given t 0 element-of double-struck upper R, we denote by upper G left-parenthesis left-bracket t 0 comma infinity right-parenthesis comma upper X right-parenthesis the space of regulated functions from left-bracket t 0 comma infinity right-parenthesis to upper X. In order to obtain a Banach space, we can intersect the space upper G left-parenthesis left-bracket t 0 comma 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=