Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

an analogous way, we define the Henstock alpha‐integrability of f colon left-bracket a comma b right-bracket right-arrow upper X.

      Definition 1.41: We say that f is Henstock alphaintegrable (or Henstock variationally integrable with respect to alpha), if there exists a function upper F Subscript alpha Baseline colon left-bracket a comma b right-bracket right-arrow upper Y (called the associate function of f) such that for every epsilon greater-than 0, there is a gauge delta on left-bracket a comma b right-bracket such that for every delta‐fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket,

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-bracket right-bracket minus minus of alpha alpha left-parenthesis right-parenthesis ti of alpha alpha left-parenthesis right-parenthesis t minus minus i 1 of ff left-parenthesis right-parenthesis xi i left-bracket right-bracket minus minus of FF alpha left-parenthesis right-parenthesis ti of FF alpha left-parenthesis right-parenthesis t minus minus i 1 less-than epsilon period

      We write f element-of upper H Subscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis in this case.

      Next, we define indefinite vector integrals.

      Definition 1.42 (Indefinite Vector Integrals):

      1 Given and , we define the indefinite integral of with respect to byIf, in addition, , then

      2 Given and , we define the indefinite integral of with respect to byIf, moreover, , then

      Note that Definition 1.42 yields the inclusions

StartLayout 1st Row 1st Column Blank 2nd Column upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis subset-of upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis upper X comma upper Y right-parenthesis right-parenthesis and 2nd Row 1st Column Blank 2nd Column upper H Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis period EndLayout

      If in item (ii) of Definition 1.42, we consider the particular case, where upper X equals upper Y, and for every t element-of left-bracket a comma b right-bracket, alpha left-parenthesis t right-parenthesis is the identity in upper X, then instead of upper K Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, upper R Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, upper H Superscript alpha Baseline left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and f overTilde Superscript alpha, we write simply

upper K left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis comma upper R left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis comma upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and f overTilde

      respectively, where

ModifyingAbove f With tilde left-parenthesis t right-parenthesis equals integral Subscript a Superscript t Baseline f left-parenthesis s right-parenthesis d s comma t element-of left-bracket a comma b right-bracket period

      If in item (i) of Definition 1.42, we have upper X equals upper Y equals double-struck upper R, then one can identify the isomorphic spaces upper L left-parenthesis double-struck upper R comma double-struck upper R right-parenthesis and double-struck upper R and, hence, the spaces upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis double-struck upper R right-parenthesis right-parenthesis, upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis, upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma upper L left-parenthesis double-struck upper R right-parenthesis right-parenthesis, and upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis can also be identified, because one has

upper K Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis equals upper H Subscript f Baseline left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis period

      Indeed. It is clear that upper H Subscript f Baseline left-parenthesis 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=