Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

right-parenthesis t d t less-than infinity period"/>

      Again, we explicit the “name” of the integral we are dealing with, whenever we believe there is room for ambiguity.

      As we mentioned earlier, when only real-valued functions are considered, the Lebesgue integral is equivalent to a modified version of the Kurzweil–Henstock (or Perron) integral called McShane integral. The idea of slightly modifying the definition of the Kurzweil–Henstock integral is due to E. J. McShane [173, 174]. Instead of taking tagged divisions of an interval left-bracket a comma b right-bracket, McShane considered what we call semitagged divisions, that is,

a equals t 0 less-than t 1 ellipsis less-than t Subscript StartAbsoluteValue d EndAbsoluteValue Baseline equals b

      is a division of left-bracket a comma b right-bracket and, to each subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket, with i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue, we associate a point xi Subscript i Baseline element-of left-bracket a comma b right-bracket called “tag” of the subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket. We denote such semitagged division by d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis and, by upper S upper T upper D Subscript left-bracket a comma b right-bracket, we mean the set of all semitagged divisions of the interval left-bracket a comma b right-bracket. But what is the difference between a semitagged division and a tagged division? Well, in a semitagged division left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket, it is not required that a tag xi Subscript i belongs to its associated subinterval left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket. In fact, neither the subintervals need to contain their corresponding tags. Nevertheless, likewise for tagged divisions, given a gauge delta of left-bracket a comma b right-bracket, in order for a semitagged division left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket to be delta-fine, we need to require that

left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket subset-of StartSet t element-of left-bracket a comma b right-bracket colon StartAbsoluteValue t minus xi Subscript i Baseline EndAbsoluteValue less-than delta left-parenthesis xi Subscript i Baseline right-parenthesis EndSet for all i equals 1 comma 2 comma ellipsis

      This simple modification provides an elegant characterization of the Lebesgue integral through Riemann sums (see [174]).

      Definition 1.91: We say that f colon left-bracket a comma b right-bracket right-arrow double-struck upper R is Kurzweil–McShane integrable, and we write f element-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis if and only if there exists upper I element-of double-struck upper R such that for every epsilon greater-than 0, there is a gauge delta on left-bracket a comma b right-bracket such that

StartAbsoluteValue upper I minus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts f left-parenthesis xi Subscript i Baseline right-parenthesis left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis EndAbsoluteValue less-than epsilon comma

      whenever d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket is delta-fine. We denote the Kurzweil–McShane integral of a function f colon left-bracket a comma b right-bracket right-arrow double-struck upper R by left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f left-parenthesis t right-parenthesis d t.

      The following inclusions hold

upper R left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis subset-of script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis equals italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis subset-of upper K left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis equals upper H left-parenthesis left-bracket a comma b right-bracket comma double-struck upper R right-parenthesis period

      Moreover,