Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

StartLayout 1st Row 1st Column Blank 2nd Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis t of ffn left-parenthesis right-parenthesis t separator d separator t 2nd Row 1st Column Blank 2nd Column plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ffn left-parenthesis right-parenthesis t separator d separator t times times of ffn left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis period EndLayout

      Since integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t d t right-arrow 0 as n tends to infinity, there exists n Subscript epsilon Baseline greater-than 0 such that the first summand in the last inequality is smaller than StartFraction epsilon Over 3 EndFraction for all n greater-than-or-slanted-equals n Subscript epsilon. Choose an n greater-than-or-slanted-equals n Subscript epsilon. Then, we can take delta such that the third summand is smaller than StartFraction epsilon Over 3 EndFraction, because it approaches integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t d t. In addition, once f Subscript n Baseline element-of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, we can refine delta so that the second summand becomes smaller than StartFraction epsilon Over 3 EndFraction, and we finish the proof.

      For a proof of the next lemma, it is enough to adapt the proof found in [107, Theorem 16] for the case of Banach space-valued functions.

      Lemma 1.95: script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Now, we are able to prove the next inclusion.

      Theorem 1.96: script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Proof. By Lemma 1.95, script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. Then, following the steps of the proof of Lemma 1.95 and using Lemma 1.94, we obtain the desired result.

      Lemma 1.97: If , then .

      Proof. It is enough to show that every xi element-of left-bracket a comma b right-bracket has a neighborhood where f overTilde is of bounded variation. By hypothesis, given epsilon greater-than 0, there exists a gauge delta on left-bracket a comma b right-bracket such that for every delta-fine