Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

alt="delta"/>-fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper S upper T upper D Subscript left-bracket a comma b right-bracket,

      The limit upper I equals limit Underscript n right-arrow infinity Endscripts left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f Subscript n Baseline left-parenthesis t right-parenthesis d t exists, since for m comma n greater-than-or-slanted-equals n Subscript epsilon Baseline,

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral ab of ffn left-parenthesis right-parenthesis t separator d separator t times times left-parenthesis right-parenthesis KMS integral integral ab of ffm left-parenthesis right-parenthesis t separator d separator t 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t d t plus left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff left-parenthesis right-parenthesis t of ffm left-parenthesis right-parenthesis t d t less-than-or-slanted-equals 2 epsilon period EndLayout

      Hence, if upper I Subscript n Baseline equals left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f Subscript n Baseline left-parenthesis t right-parenthesis d t, then

StartLayout 1st Row 1st Column Blank 2nd Column vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 upper I 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff left-parenthesis right-parenthesis xi i of ffn epsilon left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis plus vertical-bar vertical-bar vertical-bar vertical-bar minus minus sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d times times of ffn epsilon left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 In epsilon plus vertical-bar vertical-bar vertical-bar vertical-bar minus minus In epsilon upper I period EndLayout

      Lemma 1.94: Let be a sequence in and be a function. If , then and

limit Underscript n right-arrow infinity Endscripts left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f Subscript n Baseline left-parenthesis t right-parenthesis d t equals left-parenthesis italic upper K upper M upper S right-parenthesis integral Subscript a Superscript b Baseline f left-parenthesis t right-parenthesis d t period

      Proof. By Lemma 1.93, f element-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, and we have the convergence of the integrals. It remains to prove that f element-of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, that is, for every epsilon greater-than 0, there exists a gauge delta on left-bracket a comma b right-bracket such that for every delta-fine d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of italic upper T upper P upper D Subscript left-bracket a comma b right-bracket,

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 less-than-or-slanted-equals epsilon period

      However,