Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

semitagged division d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis of left-bracket a comma b right-bracket,

sigma-summation Underscript j equals 1 Overscript m Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis sj of ff tilde left-parenthesis right-parenthesis s minus minus j 1 less-than epsilon

      and the proof is complete.

      Lemma 1.98: Suppose . The following properties are equivalent:

      1  is absolutely integrable;

      2 .

      Proof. (i) right double arrow (ii). Suppose f is absolutely integrable. Since the variation of f overTilde, v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis, is given by

v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis equals sup left-brace right-brace colon sigma-summation sigma-summation equals equals i 1 vertical-bar vertical-bar d vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t minus minus i 1 colon equals equals d element-of element-of left-parenthesis right-parenthesis tiD left-bracket right-bracket comma a comma b

      we have

sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t minus minus i 1 equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts integral Subscript t Subscript i minus 1 Baseline Superscript t Subscript i Baseline Baseline vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis t d t equals integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis t d t period StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue less-than epsilon comma

      whenever d equals left-parenthesis xi Subscript i Baseline comma left-bracket t Subscript i minus 1 Baseline comma t Subscript i Baseline right-bracket right-parenthesis element-of upper T upper D Subscript left-bracket a comma b right-bracket is delta-fine. However,