ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков

Читать онлайн.
Название ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА
Автор произведения Юрий Вениаминович Красков
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 2019
isbn 978-5-5320-9876-3



Скачать книгу

type="note">24. Школьная арифметика, которая долгое время итак еле держалась на таблице умножения да на пропорциях, теперь уж совсем оскудела. Вместо неё теперь вовсю осваивают калькулятор и компьютер. Если такой вот «прогресс» продолжится и дальше, то переход к жизни на деревьях для нашей цивилизации произойдёт очень быстро и естественно.

      На этом фоне действительно выдающееся научное открытие было сделано в Википедии, которая по искусству и масштабам дезинформации просто не имеет себе равных. Долгое время многие думали, что существует всего четыре действия арифметики – это сложение и вычитание, умножение и деление. Ан нет! Есть еще возведение в степень и… извлечение корня (???). Авторы статей, которые выдали нам это «знание» через Википедию, явно оплошали, т.к. извлечение корня – это тоже самое возведение в степень, только не в целую, а в дробную. Нет, конечно, они знали об этом, но вот о чём они и не догадывались, так это о том, что это действие арифметики было ими списано у самого Эйлера в той самой книжке о его чудо алгебре25.

      Правильное название шестого действия арифметики – это логарифм, т.е. вычисление показателя степени по заданному числу и основанию степени. Как и в случае с названием книги Сингха эта ошибка вовсе не случайна, поскольку в рамках арифметики целых чисел логарифмами толком никто не занимался. Если это и случится когда-нибудь, то не раньше, чем лет через пятьсот! А вот что касается действий со степенями, то ситуация здесь ненамного лучше, чем с логарифмами. Если умножение и деление степеней, также, как и возведение степени в степень не представляют каких-то трудностей, то сложение степеней – это пока ещё тёмный лес даже для профессоров.

      Прояснение в этом вопросе начинается с ВТФ, которая утверждает, что сумма двух целых чисел в одинаковой целой степени, больше второй, не может быть целым числом в той же степени. В этом смысле эта теорема вовсе никакая не головоломка, а одно из базовых положений, (однозначно!), регламентирующих сложение целых степеней, поэтому она имеет для науки фундаментальное значение26. Тот факт, что ВТФ до сих пор не доказана, свидетельствует лишь о состоянии сегодняшней науки, которая разваливается прямо на глазах. Она не может себе даже и представить, что если бы доказательство от самого Ферма дошло до нас, то оно давно уже преподавалось бы в средней школе.

      Многие, конечно, воспримут это как сказки, однако разве что совсем уж слепые могут не замечать, что за всей этой нелепой и несуразной историей с ВТФ так явно и неприкрыто торчат уши нечестивого, что достаточно ему было лишить человеческую цивилизацию доступа к работам Ферма по арифметике, как она сразу оказалось полностью дезориентированной. Вместо того, чтобы развивать науку, её стали усиленно разрушать, причём с самыми что ни есть благими намерениями. Но особое рвение у людей появляется тогда, когда возникает какой-нибудь материальный стимул.

      Рисунок 29

      Эндрю Биэл

      Техасский предприниматель



<p>25</p>

Любопытно, что даже Эйлер, (видимо по оплошности), назвал извлечение корня операцией обратной по отношению к возведению в степень [4], хотя и отлично знал, что это не так. Но ведь это и не секрет, что даже особо одарённые люди часто путаются в очень простых вещах. Эйлер явно не испытывал тяги к формальным построениям основ науки, поскольку у него всегда было в избытке всяких других идей. Он-то думал, что с формальностями разберутся и другие, а получилось так, что именно отсюда и выросла самая большая проблема.

<p>26</p>

Это очевидно хотя бы по факту того, в какой мощный толчок для развития науки воплотились бесчисленные попытки доказать ВТФ. Кроме того, доказательство ВТФ, полученное Ферма, открывает путь к решению уравнения Пифагора новым способом (см. п. 4.3) и волшебным числам типа a + b – c = a2 + b2 – c2 (см. п. 4.4).