ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков

Читать онлайн.
Название ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА
Автор произведения Юрий Вениаминович Красков
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 2019
isbn 978-5-5320-9876-3



Скачать книгу

Да и то, что продемонстрировал Эйлер, его также не впечатлило. Более того, даже современная наука ничего вразумительного по применению «комплексных чисел» предложить не может. Зато море всяческих «научных» трудов, исследований и учебников по этой теме явно неадекватно её истиной ценности. Гаусс как чувствовал, что с этими «числами» что-то неладно и добром это не кончится, потому в этом направлении и не работал.

      Рисунок 24

      Эрнст Куммер

      Гром грянул в 1847 году, когда на заседании членов Французской академии наук Габриэль Ламе и Огюстен Коши сообщили, что их доказательства ВТФ уже готовы к рассмотрению на конкурсе. Однако, когда для выявления победителя уже можно было вскрыть полученные от них запечатанные конверты, всех опустил на грешную землю немецкий математик Эрнст Куммер (Ernst Kummer). В его письме сообщалось, что доказательство ВТФ на основе «комплексных чисел» невозможно, из-за неоднозначности их разложения на простые множители17.

      Вот тебе на! Эти-то самые «комплексные числа» оказывается вовсе и не числа!!! И нет бы заметить, наконец, что после того, как из-под науки вышибли арифметику, она висит в воздухе, не имея никакой прочной основы. Да и ошибки великих в своих последствиях тоже экстремальны, и они начинают корёжить науку, да так, что она, вместо целостной системы знаний, создает кучу не связанных между собой фрагментов.

      Если уж так случилось, то ещё тогда в 1847 году эти самые «комплексные числа» нужно было со всеми почестями торжественно похоронить. Но вот с этим делом как-то совсем не заладилось и неупокоенные души давно умерших теорий оказываются настолько живучими, что их никакими силами не удаётся изгнать из учебников и профессорских лекций. Они будут кочевать по разным книгам и справочникам, авторы которых будут в полном неведении, насколько их труды обесцениваются от этого никому не нужного балласта.

      В упомянутой книге Сингха хорошо показано как неоднозначность разложения составных целых чисел на множители лишает возможностей построить логические заключения в доказательствах и там же сообщается о том, что теорема об однозначности такого разложения для натуральных чисел была дана ещё в «Началах» Евклида. Конкретная книга и место расположения в теоремы не указано, поэтому найти нужный текст довольно сложно, однако это действительно оказалось так18.

      Рисунок 25

      Евклид

      «Начала» Евклида» – очень старая книга с архаичной терминологией, в которой эта исключительно важная для науки теорема как-то затерялась и о ней просто забыли. Первым обнаружил пропажу Гаусс. Он сформулировал её вновь и дал доказательство, содержавшее на удивление простую и даже детскую ошибку, при которой в качестве аргументации используется как раз то, что нужно доказать, (см. п. 3.3.1).

      Но ведь это же не рядовая теорема, на ней держится вся наука! А что же у Евклида? О, Господи! По сути, его



<p>17</p>

Согласно основной теоремы арифметики разложение любого натурального числа на простые множители всегда однозначно, например, 12=2×2×3, т.е. иными простыми множителями это число, как и любое другое, представить невозможно. Но для «комплексных чисел», в общем случае однозначность утрачивается, например,

12=(1+√–11)×(1+√–11)=(2+√–8)×(2+√–8)

Фактически это означает крушение науки в самих ее основах. Однако общепринятых критериев, (в виде аксиом), того, что можно относить к числам, а что нет, как не было, так и нет до сих пор.

<p>18</p>

Теорема и ее доказательство дается в «Началах» Евклида книга IX, предложение 14. Без этой теоремы решение преобладающего множества арифметических задач становится либо неполным, либо вообще невозможным.