ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА. Юрий Вениаминович Красков

Читать онлайн.
Название ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА
Автор произведения Юрий Вениаминович Красков
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 2019
isbn 978-5-5320-9876-3



Скачать книгу

– основания Французской академии наук, в подготовке которого участвовал и сам Ферма, переписываясь со своим давним коллегой из парламента Тулузы Пьером де Каркави (Pierre de Carcavy), ставшего королевским библиотекарем. Королевский указ о создании Французской академии наук готовил Каркави, а вносил его на подписание Людовику XIV всемогущий министр финансов Жан-Батист Кольбéр (Jean-Baptiste Colbert). Однако академия наук была создана лишь в 1666 г., т.е. только через год после смерти Ферма.

      Математики очень славятся тем, какие они строгие педанты, формалисты и буквоеды, но, как только речь заходит о ВТФ, все эти качества сразу куда-то исчезают. Оппоненты Ферма, игнорируя общеизвестные факты, называли его то отшельником, (это сенатора-то из Тулузы!), то князем любителей, (это одного-то из основателей Французской академии наук!), и это несмотря на его вклад в науку, сопоставимый по своей значимости лишь с парой или тройкой самых выдающихся ученых за всю историю науки!

      Рисунок 16

      Леонард Эйлер

      Не преминули они также ехидно указать на то, что о Ферма никто бы так и не узнал, если бы его задачами не заинтересовался величайший математик всех времен и народов Леонард Эйлер (Leonhard Euler). Но как раз это магическое имя и сыграло с ними злую шутку. Их безграничная вера в новаторские изыскания Эйлера была слишком слепой, чтобы заметить, что именно благодаря ему, наука получила такой мощный удар, от которого она не может оправиться до сих пор!

      Математики не просто поверили Эйлеру, но и горячо поддержали его в том, что алгебра – это самая главная математическая наука, а вот арифметика является лишь одним из её элементарных разделов14. Задумка Эйлера была действительно превосходной, поскольку его алгебра, получившая новые возможности за счёт использования «комплексных чисел», должна была стать мощнейшим научным прорывом, который позволил бы не только расширить диапазон чисел от числовой оси до числовой плоскости, но и бóльшую часть всех вычислений сводить к решению алгебраических уравнений15.

      Необходимость «комплексных чисел» математики объясняют очень даже просто. Чтобы решать абсолютно любые алгебраические уравнения нужно, (всего-то лишь!), сделать так, чтобы уравнение x2 + 1 = 0 стало разрешимым16. По-русски его можно назвать «Не пришей кобыле хвост!». Это уравнение совсем не безобидно, т.к. с практическими задачами оно никак не связано, а основы науки подрывает очень даже существенно. Тем не менее, дьявольское искушение на пустом месте создать нечто очень эффектное и грандиозное оказалось сильнее здравого смысла, и Эйлер решил продемонстрировать новые математические возможности на практике.

      ВТФ, которую Эйлеру никак не удавалось доказать, отлично подходила бы для демонстрации возможностей новой чудо алгебры. Однако результат получился более чем скромным – вместо общего доказательства ВТФ удалось доказать только один частный случай для 3-й степени [22]. Более амбициозно выглядело доказательство другой теоремы



<p>14</p>

Любопытно, что русскоязычное издание фундаментального труда Эйлера вышло в 1768 г. под названием «Универсальная арифметика», хотя оригинальное название «Vollständige Anleitung zur Algebra» должно переводиться как «Полное руководство по алгебре». Видимо, переводчики, (студенты Петр Иноходцев и Иван Юдин), резонно полагали, что уравнения исследуются здесь главным образом с точки зрения их решений в целых или рациональных числах, т.е. методами арифметики. Для сегодняшнего читателя это 2-х томное издание представляется как китайская грамота, поскольку вместе с сильно устаревшим русским языком и орфографией здесь просто неимоверное количество опечаток. Вряд ли сегодняшняя РАН как наследница «Императорской академии наук», издавшей этот труд, понимает его истинную ценность, иначе он давно был бы переиздан в современном и общедоступном виде.

<p>15</p>

Здесь есть аналогия между алгеброй и аналитической геометрией Декарта и Ферма, которая выглядит более универсальной по сравнению с геометрией Евклида. Тем не менее, арифметика и геометрия Евклида являются фундаментами, на которых только и могут появиться алгебра и аналитическая геометрия. В этом смысле идея Эйлера рассматривать все вычисления сквозь призму алгебры заведомо ущербна. Но его логика была совсем иной. Он понимал, что если наука будет развиваться только путём увеличения разновидностей уравнений, которые она способна решать, то рано или поздно она зайдет в тупик. И в этом смысле его исследования представляли для науки огромную ценность. Другое дело, что их алгебраическая форма была воспринята как магистральный путь развития и это привело в дальнейшем к разрушительным последствиям.

<p>16</p>

Здесь-то и возникает понятие «числовой плоскости», где по оси x располагаются действительные числа, а по оси y мнимые, т.е. те же действительные, только умноженные на «число» i= √-1. Но тогда между этими осями получается противоречие – на действительной оси множитель 1n является нейтральным, а на мнимой оси множитель in нет, а это не согласуется с базовыми свойствами чисел. Если уж вводится число i, то оно должно присутствовать на обеих осях, но тогда нет никакого смысла введения второй оси. Вот и выходит, что с точки зрения базовых свойств чисел эфемерное создание в виде числовой плоскости – полная бессмыслица.