Название | ЧУДЕСА АРИФМЕТИКИ ОТ ПЬЕРА СИМОНА ДЕ ФЕРМА |
---|---|
Автор произведения | Юрий Вениаминович Красков |
Жанр | Техническая литература |
Серия | |
Издательство | Техническая литература |
Год выпуска | 2019 |
isbn | 978-5-5320-9876-3 |
3.2.2. Аксиомы действий
Все арифметические действия входят составной частью в определение сущности числа. В компактном виде они представляются следующим образом:
1. Сложение: n = (1+1…)+(1+1+1…) = (1+1+1+1+1…)
2. Умножение: a+a+a+…+a=a×b=c
3. Возведение в степень: a×a×a×…×a=ab=c
4. Вычитание: a+b=c → b=c−a
5. Деление: a×b=c → b=c : a
6. Логарифм: ab = c → b=logac
Отсюда можно сформулировать все нужные определения в виде аксиом.
Аксиома 1. Действие сложения нескольких чисел (слагаемых) – это их соединение в одно число (сумму).
Аксиома 2. Все арифметические действия являются либо сложением, либо производными от сложения.
Аксиома 3. Существуют прямые и обратные арифметические действия.
Аксиома 4. Прямые действия – это разновидности сложения. Кроме самого сложения к ним относятся также умножение и возведение в степень.
Аксиома 5. Обратные действия – это вычисление аргументов функций. К ним относятся вычитание, деление и логарифм.
Аксиома 6. Не существуют иные действия с числами, кроме комбинаций из шести арифметических действий40.
3.2.3. Базовые свойства чисел
Следствием аксиом действий являются следующие базовые свойства чисел, обусловленные необходимостью практических вычислений:
1. Наполнение: a+1>a
2. Нейтральность единицы: a×1=a:1=a
3. Коммутативность: a+b=b+a; ab=ba
4. Ассоциативность: (a+b)+c=a+(b+c); (ab)c=a(bc)
5. Дистрибутивность: (a+b)c=ac+bc
6. Сопряженность: a=c → a±b=b±c; ab=bc; a:b=c:b; ab=cb; logba= logbc
Эти свойства известны давным-давно как азы начальной школы и до сих пор они воспринимались как элементарные и очевидные. Отсутствие должного понимания происхождения этих свойств из сущности понятия числа стало причиной разрушения науки как целостной системы знаний, которую нужно теперь отстраивать, начиная с азов и сохраняя при этом всё то ценное, что осталось от настоящей науки. Приведённая выше аксиоматика исходит из определения сущности понятия числа и поэтому представляет собой единое целое. Однако этого недостаточно для того, чтобы оградить науку от другой напасти, т.е. чтобы в процессе развития она не утонула в океане собственных изысканий, или не запуталась в сложных переплетениях большого множества разных идей.
В этом смысле нужно очень чётко понимать, что аксиомы не являются утверждениями, принятыми без доказательств. В отличие от теорем, они есть только констатации и ограничения,
39
Итак, считалка – это именованные начальные числа в готовом, (сосчитанном), виде, чтобы на их основе стало возможно, используя аналогичный метод, именовать также любые другие числа. Всё это, конечно, совсем не сложно, но почему же этому не учат в школе, а просто заставляют всё заучивать без объяснений? Ответ очень простой – потому что наука просто не знает, что есть число, а признаться в этом никак не может.
40
Аксиомы действий, которые до сих пор отдельно не выделялись, также являются прямым следствием определения сущности понятия числа. Они, как способствуют обучению, так и устанавливают определенную ответственность за обоснованность любых научных изысканий в области чисел. В этом смысле последняя 6-я аксиома выглядит даже слишком категоричной. Но без такого рода ограничений в систему знаний можно протаскивать любую тарабарщину и затем называть это «прорывом в науке».