Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Читать онлайн.
Название Generalized Ordinary Differential Equations in Abstract Spaces and Applications
Автор произведения Группа авторов
Жанр Математика
Серия
Издательство Математика
Год выпуска 0
isbn 9781119655008



Скачать книгу

minus t Subscript i minus 1 Baseline right-parenthesis minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts StartAbsoluteValue vertical-bar vertical-bar vertical-bar vertical-bar of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis minus vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t EndAbsoluteValue plus StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue 3rd Row 1st Column Blank 2nd Column less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t plus StartAbsoluteValue sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ff tilde left-parenthesis right-parenthesis ti of ff tilde left-parenthesis right-parenthesis t minus minus i 1 minus v a r Subscript a Superscript b Baseline left-parenthesis f overTilde right-parenthesis EndAbsoluteValue period EndLayout"/>

      The next result is a consequence of the fact that italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and Lemmas 1.97 and 1.98. A proof of it can be found in [132, Theorem 10.3].

      Corollary 1.99: All functions of are absolutely.integrable

      The reader can find a proof of the next lemma in [35, Theorem 9].

      Lemma 1.100: All functions of are.measurable

      Finally, we can prove the following inclusion.

      Theorem 1.101: italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Proof. The result follows from the facts that all functions of upper H left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis and, hence, of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis are measurable (Lemma 1.100), and all functions of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis are absolutely integrable by Corollary 1.99.

      Proposition 1.102 (Hönig): If is an infinite dimensional Banach space, then there exists .

      Proof. Let dimension upper X denote the dimension of upper X. If dimension upper X equals infinity, then the Theorem of Dvoretsky–Rogers (see [60] and also [57]) implies there exists a sequence left-brace x Subscript n Baseline right-brace Subscript n element-of double-struck upper N in upper X which is summable but not absolutely summable. Thus, if we define a function f colon left-bracket 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=