As an in-depth guide to understanding wind effects on cable-supported bridges, this book uses analytical, numerical and experimental methods to give readers a fundamental and practical understanding of the subject matter. It is structured to systemically move from introductory areas through to advanced topics currently being developed from research work. The author concludes with the application of the theory covered to real-world examples, enabling readers to apply their knowledge. The author provides background material, covering areas such as wind climate, cable-supported bridges, wind-induced damage, and the history of bridge wind engineering. Wind characteristics in atmospheric boundary layer, mean wind load and aerostatic instability, wind-induced vibration and aerodynamic instability, and wind tunnel testing are then described as the fundamentals of the subject. State-of-the-art contributions include rain-wind-induced cable vibration, wind-vehicle-bridge interaction, wind-induced vibration control, wind and structural health monitoring, fatigue analysis, reliability analysis, typhoon wind simulation, non-stationary and nonlinear buffeting response. Lastly, the theory is applied to the actual long-span cable-supported bridges. Structured in an easy-to-follow way, covering the topic from the fundamentals right through to the state-of-the-art Describes advanced topics such as wind and structural health monitoring and non-stationary and nonlinear buffeting response Gives a comprehensive description of various methods including CFD simulations of bridge and vehicle loading Uses two projects with which the author has worked extensively, Stonecutters cable-stayed bridge and Tsing Ma suspension bridge, as worked examples, giving readers a practical understanding
The stepping-stone text for students with a preliminary knowledge of organic chemistry looking to move into organic synthesis research and graduate-level coursework Organic synthesis is an advanced but important field of organic chemistry, however resources for advanced undergraduates and graduate students moving from introductory organic chemistry courses to organic synthesis research are scarce. Introduction to Strategies for Organic Synthesis is designed to fill this void, teaching practical skills for making logical retrosynthetic disconnections, while reviewing basic organic transformations, reactions, and reactivities. Divided into seven parts that include sections on Retrosynthesis and Protective Groups; Overview of Organic Transformations; Synthesis of Monofunctional Target Molecules; Synthesis of Target Molecules with Two Functional Groups; Synthesis of Aromatic Target Molecules; Synthesis of Compounds Containing Rings; and Predicting and Controlling Stereochemistry, the book covers everything students need to successfully perform retrosynthetic analyses of target molecule synthesis. Starting with a review of functional group transformations, reagents, and reaction mechanisms, the book demonstrates how to plan a synthesis, explaining functional group analysis and strategic disconnections. Incorporating a review of the organic reactions covered, it also demonstrates each reaction from a synthetic chemist's point of view, to provide students with a clearer understanding of how retrosynthetic disconnections are made. Including detailed solutions to over 300 problems, worked-through examples and end-of-chapter comprehension problems, Introduction to Strategies for Organic Synthesis serves as a stepping stone for students with an introductory knowledge of organic chemistry looking to progress to more advanced synthetic concepts and methodologies.
The field of e-learning continues to experience dramatic and turbulent growth. Over time, as technology has improved and the method's real capabilities have emerged, e-learning has gained widespread acceptance and is now the fastest growing sector of corporate learning. As in years past, Michael Allen's Annual offers a diverse and important collection that contains some of the most current insights and best practices that will help both educators and workplace learning leaders address issues of design and implementation, as well as strategy and culture. In addition, this new volume offers a diverse mix of content that spans the full spectrum of technology-based learning. Year after year, the Annual discusses emerging trends in social media; showcases e-learning innovation; presents contemporary- and best-practices; tackles big-picture, strategic issues; and provides a host of useful tips and techniques. Additional content is also available online. Praise for Michael Allen's 2012 e-Learning Annual «Michael Allen's Annual really is annual. I found new examples and provocative ideas—just what I was looking for.» —Allison Rossett, professor of educational technology, San Diego State University «Just another academic anthology? Hardly! Michael Allen has convinced e-learning's super-heroes to join forces to crush complacency, demolish dogma, rewrite rules, streamline strategies, and light a brighter future for e-learning. Warning: The accumulated wisdom and original thinking of this elite team of designers, practitioners, consultants, and researchers will leave you dissatisfied with your current e-learning efforts and aching to put their ideas into play.» —William Horton, author, e-Learning by Design and consultant, William Horton Consulting «The real learning at conferences takes place in the hallways. This wonderful book is like eavesdropping on those conversations, except that Michael has put the top thinkers in our field in the hall for you.» —Jay Cross, chairman, Internet Time Alliance Nabeel Ahmad Clark Aldrich Bobbe Baggio Tony Bingham Julia Bulkowski Bryan Chapman Phil Cowcill Allan Henderson Peter Isackson Cheryl Johnson Cathy King Leslie Kirshaw Tina Kunshier David Metcalf Corinne Miller Craig Montgomerie Frank Nguyen Maria Plakhotnik Tonette Rocco Anita Rosen Patti Shank Clive Shepherd Martyn Sloman Belinda Smith Susan Smith Nash Ken Spero Carla Torgerson Thomas Toth Reuben Tozman Marc Weinstein
This book describes advances in synthesis, processing, and technology of environmentally friendly polymers generated from renewable resources. With contents based on a wide range of functional monomers and contributions from eminent researchers, this volume demonstrates the design, synthesis, properties and applications of plant oil based polymers, presenting an elaborate review of acid mediated polymerization techniques for the generation of green polymers. Chemical engineers are provided with state-of-the-art information that acts to further progress research in this direction.
The latest frequency synthesis techniques, including sigma-delta, Diophantine, and all-digital Sigma-delta is a frequency synthesis technique that has risen in popularity over the past decade due to its intensely digital nature and its ability to promote miniaturization. A continuation of the popular Frequency Synthesis by Phase Lock, Second Edition, this timely resource provides a broad introduction to sigma-delta by pairing practical simulation results with cutting-edge research. Advanced Frequency Synthesis by Phase Lock discusses both sigma-delta and fractional-n—the still-in-use forerunner to sigma-delta—employing Simulink® models and detailed simulations of results to promote a deeper understanding. After a brief introduction, the book shows how spurs are produced at the synthesizer output by the basic process and different methods for overcoming them. It investigates how various defects in sigma-delta synthesis contribute to spurs or noise in the synthesized signal. Synthesizer configurations are analyzed, and it is revealed how to trade off the various noise sources by choosing loop parameters. Other sigma-delta synthesis architectures are then reviewed. The Simulink simulation models that provided data for the preceding discussions are described, providing guidance in making use of such models for further exploration. Next, another method for achieving wide loop bandwidth simultaneously with fine resolution—the Diophantine Frequency Synthesizer—is introduced. Operation at extreme bandwidths is also covered, further describing the analysis of synthesizers that push their bandwidths close to the sampling-frequency limit. Lastly, the book reviews a newly important technology that is poised to become widely used in high-production consumer electronics—all-digital frequency synthesis. Detailed appendices provide in-depth discussion on various stages of development, and many related resources are available for download, including Simulink models, MATLAB® scripts, spreadsheets, and executable programs. All these features make this authoritative reference ideal for electrical engineers who want to achieve an understanding of sigma-delta frequency synthesis and an awareness of the latest developments in the field.
Any architect doing small or medium scaled projects who is also vested in sustainable design but is not yet doing BIM will enjoy this book's overall focus.-Architosh.com This work is the leading guide to architectural design within a building information modeling (BIM) workflow, giving the practitioner a clear procedure when designing climate-load dominated buildings. The book incorporates new information related to BIM, integrated practice, and sustainable design, as well information on how designers can incorporate the latest technological tools. Each chapter addresses specific topics, such as natural ventilation for cooling, passive solar heating, rainwater harvesting and building hydrology, optimizing material use and reducing construction waste, and collaborating with consultants or other building professionals such as engineers and energy modelers.
This book provides a thorough and up-to-date overview of the aryl hydrocarbon receptor (AHR) and its unique dual role in toxicology and biology. The coverage includes epigenetic mechanisms, gene expression, reproductive and developmental toxicity, signal transduction, and transgenic animal models. Featuring an internationally recognized team of authors at the forefront of AHR research, this resource provides a comprehensive reference for readers interested in understanding the full spectrum of AHR, from basic concepts, toxicology analysis, and models to polymorphism and related diseases.
A complete guide for helping professionals, with tried-and-true techniques for practicing family counseling therapy Now in its second edition, Working With Families: Guidelines and Techniques is filled with up-to-date, systems-oriented techniques focused on field-tested results. Outlining the dos and don'ts of working with different types of families and the various complications, nuances, and complexities that can occur, this practical guide provides a broad and proven selection of interventions, processes, and guidelines for working interactively, systematically, and compassionately with families. Working With Families, Second Edition covers a range of topics including: Family work in different settings Session-by-session guidelines Therapeutic themes by family type Managing adolescents in family sessions Dealing with fear of family work Family mapping Strategic child assessment Chemical dependence and its impact on families Informed by the author's many years of experience in the field, both as a clinician and as a trainer, Working With Families, Second Edition offers an invaluable systems-oriented, goal-directed, problem-solving approach to family counseling therapy for all mental health professionals.
This book concentrates on the topic of physical and chemical equilibrium. Using the simplest mathematics along with numerous numerical examples it accurately and rigorously covers physical and chemical equilibrium in depth and detail. It continues to cover the topics found in the first edition however numerous updates have been made including: Changes in naming and notation (the first edition used the traditional names for the Gibbs Free Energy and for Partial Molal Properties, this edition uses the more popular Gibbs Energy and Partial Molar Properties,) changes in symbols (the first edition used the Lewis-Randal fugacity rule and the popular symbol for the same quantity, this edition only uses the popular notation,) and new problems have been added to the text. Finally the second edition includes an appendix about the Bridgman table and its use.
The next enterprise computing era will rely on the synergy between both technologies: semantic web and model-driven software development (MDSD). The semantic web organizes system knowledge in conceptual domains according to its meaning. It addresses various enterprise computing needs by identifying, abstracting and rationalizing commonalities, and checking for inconsistencies across system specifications. On the other side, model-driven software development is closing the gap among business requirements, designs and executables by using domain-specific languages with custom-built syntax and semantics. It focuses on using modeling languages as programming languages. Among many areas of application, we highlight the area of configuration management. Consider the example of a telecommunication company, where managing the multiple configurations of network devices (routers, hubs, modems, etc.) is crucial. Enterprise systems identify and document the functional and physical characteristics of network devices, and control changes to those characteristics. Applying the integration of semantic web and model-driven software development allows for (1) explicitly specifying configurations of network devices with tailor-made languages, (2) for checking the consistency of these specifications (3) for defining a vocabulary to share device specifications across enterprise systems. By managing configurations with consistent and explicit concepts, we reduce cost and risk, and enhance agility in response to new requirements in the telecommunication area. This book examines the synergy between semantic web and model-driven software development. It brings together advances from disciplines like ontologies, description logics, domain-specific modeling, model transformation and ontology engineering to take enterprise computing to the next level.