Small-Angle Scattering. Ian W. Hamley

Читать онлайн.
Название Small-Angle Scattering
Автор произведения Ian W. Hamley
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119768340



Скачать книгу

half italic q upper L cosine alpha EndFraction period StartFraction 2 upper J 1 left-parenthesis italic q upper R sine alpha right-parenthesis Over italic q upper R sine alpha EndFraction right-bracket squared sine alpha normal d alpha"/> Radius, R. length, L. Scattering contrast, Δρ Infinitely thin circular disc upper P left-parenthesis q right-parenthesis equals upper V squared left-parenthesis upper Delta rho right-parenthesis squared StartFraction 2 Over q squared upper R squared EndFraction left-bracket 1 minus StartFraction upper J 1 left-parenthesis 2 italic q upper R right-parenthesis Over italic q upper R EndFraction right-bracket equals upper P Subscript italic disc Baseline left-parenthesis q right-parenthesis Radius, R Scattering contrast, Δρ Lipid bilayer with Gaussian scattering density profile (within a disc) P(q) = [Pdisc(q)/(Δρ)2]Pcs(q) where the cross‐section form factor Pcs(q) is upper P Subscript italic c s Baseline left-parenthesis q right-parenthesis equals left-bracket 2 StartRoot 2 pi EndRoot sigma Subscript upper H Baseline upper Delta rho Subscript upper H Baseline exp left-parenthesis minus StartFraction left-parenthesis q sigma Subscript upper H Baseline right-parenthesis squared Over 2 EndFraction right-parenthesis cosine left-parenthesis StartFraction italic q t Over 2 EndFraction right-parenthesis right-bracket plus StartRoot 2 pi EndRoot sigma Subscript upper C Baseline upper Delta rho Subscript upper C Baseline exp left-parenthesis minus StartFraction left-parenthesis q sigma Subscript upper C Baseline right-parenthesis squared Over 2 EndFraction right-parenthesis right-bracket squared Cross‐section parameters illustrated in Figure 1.16 Helices and helical tapes (Pringle–Schmidt form factor [54]) upper I left-parenthesis q right-parenthesis equals sigma-summation Underscript n equals 0 Overscript infinity Endscripts open e Subscript n Baseline cosine squared left-parenthesis StartFraction n phi Over 2 EndFraction right-parenthesis StartStartFraction sine squared left-parenthesis StartFraction n omega Over 2 EndFraction right-parenthesis OverOver left-parenthesis n omega slash 2 right-parenthesis squared EndEndFraction one half integral Subscript 0 Superscript pi Baseline left-bracket upper G Subscript n Baseline left-parenthesis q comma alpha right-bracket squared sine alpha normal d alpha Here upper G Subscript n Baseline left-parenthesis q comma alpha right-parenthesis equals StartFraction integral Subscript alpha upper R Superscript upper R Baseline upper J Subscript n Baseline left-parenthesis italic q r sine alpha right-parenthesis StartStartFraction sine left-bracket StartFraction upper H Over 2 EndFraction left-parenthesis q cosine alpha plus StartFraction 2 pi n Over upper P EndFraction right-parenthesis right-bracket OverOver StartFraction upper H Over 2 EndFraction left-parenthesis q cosine alpha plus StartFraction 2 pi n Over upper P EndFraction right-parenthesis EndEndFraction r normal d r Over one half upper R squared left-parenthesis 1 minus alpha squared right-parenthesis EndFraction and ɛ0 = 1 and ɛn = 2 for n ≥ 1 H helix length, P helix pitch, other parameters defined in Figure 1.16 Graph depicts the parameters for complex form factors. (a) Gaussian bilayer, (b) Projection of a helical structure showing definitions of angles and radii in the corresponding Pringle–Schemidt form factor.

      The form factors for particulate systems of different dimensionality can all be expressed in terms of hypergeometric functions [27].

      1.7.2 Limiting Behaviours

Graph depicts the form factors calculated for homogeneous particles along with limiting slopes. Form factors are calculated for spheres of radius R = 30 Å, cylinders of radius R = 30 Å and length L = 1000 Å and discs with thickness T = 30 Å and radius R = 1000 Å. The calculated profiles have been offset vertically for convenience. The minima in principle have zero intensity, but are truncated due to numerical calculation accuracy and as for convenient for plotting on a logarithmic intensity scale. The profiles were calculated using SASfit.

      These scaling behaviours for extended rod‐like and flat particles can be derived as discussed in the following section.

      Alternatively, the scaling behaviour can be obtained from the behaviours of the autocorrelation functions at large r (relating to low q behaviour of the intensity). For cylinders (radius R), [56]