Small-Angle Scattering. Ian W. Hamley

Читать онлайн.
Название Small-Angle Scattering
Автор произведения Ian W. Hamley
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119768340



Скачать книгу

R).

Graph depicts the comparison of form factor of a polydisperse sphere and a monodisperse ellipsoid with R1 = 29 Å and R2 = 34.8 Å.

      Polymers adopt coiled conformations. In the simplest picture, these are described as ideal Gaussian coils. Polymers in the melt or in solution (under theta conditions) adopt this conformation which is the most basic model of polymer conformation. The form factor for Gaussian coils can easily be calculated (as follows) to yield the Debye function. By analogy with Eq. (1.18), but integrating over a Gaussian distribution the intensity (form factor) is [61]

      The Gaussian function for a random coil depends on the end‐to‐end distance between points i and j, Rij and |ij|, which is the number of links between these points:

      (1.103)p Subscript italic Gauss Baseline left-parenthesis StartAbsoluteValue i minus j EndAbsoluteValue comma upper R Subscript italic i j Baseline right-parenthesis equals left-parenthesis StartFraction 3 Over 2 pi bar i minus j bar b squared EndFraction right-parenthesis Superscript 3 slash 2 Baseline exp left-parenthesis minus StartFraction 3 upper R Subscript italic i j Superscript 2 Baseline Over 2 bar i minus j bar b squared EndFraction right-parenthesis

      The integral over Rij can be evaluated using

      (1.104)integral Subscript 0 Superscript infinity Baseline upper R Subscript italic i j Baseline sine left-parenthesis q upper R Subscript italic i j Baseline right-parenthesis exp left-parenthesis minus StartFraction upper R Subscript italic i j Superscript 2 Baseline Over x EndFraction right-parenthesis d upper R Subscript italic i j Baseline equals StartFraction pi Superscript 1 slash 2 Baseline q x Superscript 3 slash 2 Baseline Over 4 EndFraction exp left-parenthesis minus StartFraction q squared x Over 4 EndFraction right-parenthesis

      (1.105)upper P left-parenthesis q right-parenthesis equals StartFraction 1 Over upper N squared EndFraction sigma-summation Underscript i Endscripts sigma-summation Underscript j Endscripts exp left-parenthesis minus StartFraction q squared b squared bar i minus j bar Over 6 EndFraction right-parenthesis

      (1.106)upper P left-parenthesis q right-parenthesis equals StartFraction 1 Over upper N squared EndFraction integral Subscript 0 Superscript upper N Baseline integral Subscript 0 Superscript upper N Baseline exp left-parenthesis minus StartFraction q squared b squared Over 6 EndFraction bar u minus v bar right-parenthesis italic dudv

      This can be evaluated [61] to give

Graph depicts the Debye form factor for a polymer with Rg = 50 Å.

      The Debye form factor can be generalized to the case of expanded/collapsed coils for which Rg = bNν, where v is the Flory exponent (v = 1/2 for Gaussian coils such as polymer chains in a theta solvent, v ≈ 3/5 for polymers in good solvents, v = 1/3 in a poor solvent).