Small-Angle Scattering. Ian W. Hamley

Читать онлайн.
Название Small-Angle Scattering
Автор произведения Ian W. Hamley
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119768340



Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_c422c3ff-56e3-5d2b-969d-adda8b8b07a8.png" alt="upper I Subscript c Baseline left-parenthesis q right-parenthesis equals 2 pi integral Subscript 0 Superscript upper D Baseline gamma Subscript c Baseline left-parenthesis r right-parenthesis upper J 0 left-parenthesis italic q r right-parenthesis normal d r"/>

      Here D is the cross‐section diameter. For a uniform cylinder this may be evaluated to give [6]

      In these equations J0(qR) and J1(qR) denote Bessel functions of integral order. The cross‐section radius is given by upper R Subscript c Baseline equals upper R slash StartRoot 2 EndRoot [58] (see also the discussion in Section 1.4).

      The pair distribution function of the cross‐section can be obtained from the cross‐section intensity via an inverse Hankel transform [7]

      (1.96)gamma Subscript c Baseline left-parenthesis r right-parenthesis equals StartFraction 1 Over 2 pi EndFraction integral Subscript 0 Superscript infinity Baseline upper I Subscript c Baseline left-parenthesis q right-parenthesis upper J 0 left-parenthesis italic q r right-parenthesis q normal d q

      For flat particles (discs of area A) the intensity can be factored, via an equation analogous to Eq. (1.93) as [4, 6, 10]

      where It(q) is the cross‐section scattering that depends on the thickness T, which is related to the cross‐section radius via upper R Subscript c Baseline equals upper T slash StartRoot 12 EndRoot [58].

      (1.98)upper M Subscript c Baseline equals left-bracket StartFraction normal d sigma Over d upper Omega EndFraction period StartFraction q Over pi EndFraction right-bracket Subscript q right-arrow 0 Baseline period StartFraction upper N Subscript upper A Baseline Over c left-parenthesis upper Delta rho v Subscript p Baseline right-parenthesis squared EndFraction

      where NA is Avogadro's number, vp is the specific volume in cm3 g−1, Δρ is the contrast in cm−2 and q is in cm−1.

      For flat particles, the area per unit length Mt (in g mol−1 cm−2) is obtained from the analogous equation (with q2 dependence cf. Eq. (1.93))

      (1.99)upper M Subscript t Baseline equals left-bracket StartFraction normal d sigma Over d upper Omega EndFraction period StartFraction q squared Over 2 pi EndFraction right-bracket Subscript q right-arrow 0 Baseline period StartFraction upper N Subscript upper A Baseline Over c left-parenthesis upper Delta rho v Subscript p Baseline right-parenthesis squared EndFraction

      The derivations of these equations can be found elsewhere [60].

      Particle polydispersity has a considerable influence on the shape of the form factor. It is included via integration over a particle size distribution D(R′):

      (1.100)upper I left-parenthesis q right-parenthesis equals integral Subscript 0 Superscript infinity Baseline upper D left-parenthesis upper R prime right-parenthesis upper P 0 left-parenthesis q comma upper R Superscript prime Baseline right-parenthesis italic d upper R Superscript prime Baseline

      Here the subscript 0 has been added to the form factor, in order to emphasize that this is the term for the monodisperse system.

      (1.101)upper D left-parenthesis upper R Superscript prime Baseline right-parenthesis equals c period exp left-parenthesis minus StartFraction left-parenthesis upper R prime minus upper R right-parenthesis squared Over 2 sigma squared EndFraction right-parenthesis

Graph depicts the influence of polydispersity on the form factor of a sphere with R = 30 Å in terms of a Gaussian standard deviation with width σ (in Å) indicated.

      Here σ is the standard deviation, which is related to the full width at half maximum by FWHM equals 2 StartRoot 2 ln 2 EndRoot sigma, and c is a normalization constant. Other forms of distribution can be used and may be motivated by known dispersity distributions (based on the system synthesis, for example), for example log‐normal functions, Schulz‐Zimm functions etc.

      It is clear from the example of calculated form factors for a uniform sphere in Figure 1.19 that increasing σ causes the form factor oscillations to get progressively washed out such that they are largely