Small-Angle Scattering. Ian W. Hamley

Читать онлайн.
Название Small-Angle Scattering
Автор произведения Ian W. Hamley
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119768340



Скачать книгу

the intensity scales approximately as

      (1.109)upper I left-parenthesis q right-parenthesis tilde q Superscript negative 5 slash 3

Graph depicts the comparison of form factor for random walk chains and excluded volume chains with scaling laws indicated, also showing Guinier regime and effect of local stiffness at very high q.

      (1.110)upper S left-parenthesis 0 right-parenthesis equals k Subscript upper B Baseline upper T left-parenthesis StartFraction partial-differential squared upper Delta upper F Subscript italic m i x Baseline Over partial-differential phi squared EndFraction right-parenthesis Superscript negative 1

      This is related to Eq. (2.8), first noting that the dimensionless structure factor (note q, V, and Δρ should be in consistent units) at q = 0 is given by

      (1.111)upper S left-parenthesis 0 right-parenthesis equals StartFraction 1 Over upper V left-parenthesis upper Delta rho right-parenthesis squared EndFraction left-parenthesis StartFraction d sigma Over d upper Omega EndFraction right-parenthesis Subscript q equals 0

      where V is the volume of the system and using the relationship between isothermal compressibility χT and osmotic pressure, π [12]:

      The volume fraction can be written [12, 49]

      (1.113)phi equals StartFraction upper N v Subscript m Baseline Over upper V EndFraction

      Using the free energy change of mixing ΔFmix from Flory‐Huggins theory gives

      (1.115)StartFraction 1 Over upper S left-parenthesis 0 right-parenthesis EndFraction equals StartFraction 1 Over phi upper N Subscript upper A Baseline EndFraction plus StartFraction 1 Over left-parenthesis 1 minus phi right-parenthesis upper N Subscript upper B Baseline EndFraction minus 2 chi

      This is generalized for non‐zero wavenumbers using the random‐phase approximation (RPA) to give [12, 49, 61, 64]

      Here P(q, N) is the corresponding form factor of an ideal chain, i.e. the Debye function (Eq. (1.107)). These expressions apply to the case of polymers in solution, the subscripts A and B referring to solvent and solute. These expressions are also useful for the case of blends of protonated and deuterated polymers in SANS studies (see Section 5.8), where A and B label the respective unlabelled and labelled chains. The RPA is a mean field method, widely employed in polymer science to calculate the structure factor in terms of the form factor of single chains [62].

      SAS data from blends is often fitted using the Ornstein‐Zernike function:

      (1.118)upper S left-parenthesis 0 right-parenthesis equals StartFraction 1 Over phi upper N Subscript upper A Baseline plus left-parenthesis 1 minus phi right-parenthesis upper N Subscript upper B Baseline minus 2 chi EndFraction