MREADZ.COM - много разных книг на любой вкус

Скачивание или чтение онлайн электронных книг.

Fundamentals of Infrared and Visible Detector Operation and Testing

Steve Hodges

Presents a comprehensive introduction to the selection, operation, and testing of infrared devices, including a description of modern detector assemblies and their operation This book discusses how to use and test infrared and visible detectors. The book provides a convenient reference for those entering the field of IR detector design, test or use, those who work in the peripheral areas, and those who teach and train others in the field. Chapter 1 contains introductory material. Radiometry is covered in Chapter 2. The author examines Thermal detectors in Chapter 3; the “Classical” photon detectors – simple photoconductors and photovoltaics in Chapter 4; and “Modern Photon Detectors” in Chapter 5. Chapters 6 through 8 consider respectively individual elements and small arrays of elements the “readouts” (ROICs) used with large imaging arrays; and Electronics for FPA Operation and Testing. The Test Set and The Testing Process are analyzed in Chapters 9 and 10, with emphasis on uncertainty and trouble shooting. Chapters 11 through 15 discuss related skills, such as Uncertainty, Cryogenics, Vacuum, Optics, and the use of Fourier Transforms in the detector business. Some highlights of this new edition are that it Discusses radiometric nomenclature and calculations, detector mechanisms, the associated electronics, how these devices are tested, and real-life effects and problems Examines new tools in Infrared detector operations, specifically: selection and use of ROICs, electronics for FPA operation, operation of single element and very small FPAs, microbolometers, and multi-color FPAs Contains five chapters with frequently sought-after information on related subjects, such as uncertainty, optics, cryogenics, vacuum, and the use of Fourier mathematics for detector analyses Fundamentals of Infrared and Visible Detector Operation and Testing, Second Edition, provides the background and vocabulary necessary to help readers understand the selection, operation, and testing of modern infrared devices.

Thermodynamics and Kinetics of Drug Binding

Hugo Kubinyi

This practical reference for medicinal and pharmaceutical chemists combines the theoretical background with modern methods as well as applications from recent lead finding and optimization projects. Divided into two parts on the thermodynamics and kinetics of drug-receptor interaction, the text provides the conceptual and methodological basis for characterizing binding mechanisms for drugs and other bioactive molecules. It covers all currently used methods, from experimental approaches, such as ITC or SPR, right up to the latest computational methods. Case studies of real-life lead or drug development projects are also included so readers can apply the methods learned to their own projects. Finally, the benefits of a thorough binding mode analysis for any drug development project are summarized in an outlook chapter written by the editors.

Predictive Toxicology. From Vision to Reality

Hugo Kubinyi

Tailored to the needs of scientists developing drugs, chemicals, cosmetics and other products this one-stop reference for medicinal chemists covers all the latest developments in the field of predictive toxicology and its applications in safety assessment. With a keen emphasis on novel approaches, the topics have been tackled by selected expert scientists, who are familiar with the theoretical scientific background as well as with the practical application of current methods. Emerging technologies in toxicity assessment are introduced and evaluated in terms of their predictive power, with separate sections on computer predictions and simulation methods, novel in vitro systems including those employing stem cells, toxicogenomics and novel biomarkers. In each case, the most promising methods are discussed and compared to classical in vitro and in vivo toxicology assays. Finally, an outlook section discusses such forward-looking topics as immunotoxicology assessment and novel regulatory requirements. With its wealth of methodological knowledge and its critical evaluation of modern approaches, this is a valuable guide for toxicologists working in pharmaceutical development, as well as in safety assessment and the regulation of drugs and chemicals.

Introduction to Hydrogen Technology

Alla V. Bailey

Introduces the field of hydrogen technology and explains the basic chemistry underlying promising and innovative new technologies This new and completely updated edition of Introduction to Hydrogen Technology explains, at an introductory level, the scientific and technical aspects of hydrogen technology. It incorporates information on the latest developments and the current research in the field, including: new techniques for isolating and storing hydrogen, usage as a fuel for automobiles, residential power systems, mobile power systems, and space applications. Introduction to Hydrogen Technology, Second Edition features classroom-tested exercises and sample problems. It details new economical methods for isolating the pure hydrogen molecule. These less expensive methods help make hydrogen fuel a very viable alternative to petroleum-based energy. The book also adds a new chapter on hydrogen production and batteries. It also provides in-depth coverage of the many technical hurdles in hydrogen storage. The developments in fuel cells since the last edition has been updated. Offers new chapters on hydrogen production, storage, and batteries Features new sections on advanced hydrogen systems, new membranes, greenhouse gas sensors and updated technologies involving solar and wind energies Includes problems at the end of the Chapters, as well as solutions for adopters This book is an introduction to hydrogen technology for students who have taken at least one course in general chemistry and calculus; it will also be a resource book for scientists and researchers working in hydrogen-based technologies, as well as anyone interested in sustainable energy.

Submerged Landscapes of the European Continental Shelf. Quaternary Paleoenvironments

Anthony Burgess

Quaternary Paleoenvironments examines the drowned landscapes exposed as extensive and attractive territory for prehistoric human settlement during the Ice Ages of the Pleistocene, when sea levels dropped to 120m-135m below their current levels. This volume provides an overview of the geological, geomorphological, climatic and sea-level history of the European continental shelf as a whole, as well as a series of detailed regional reviews for each of the major sea basins. The nature and variable attractions of the landscapes and resources available for human exploitation are examined, as are the conditions under which archaeological sites and landscape features are likely to have been preserved, destroyed or buried by sediment during sea-level rise. The authors also discuss the extent to which we can predict where to look for drowned landscapes with the greatest chance of success, with frequent reference to examples of preserved prehistoric sites in different submerged environments. Quaternary Paleoenvironments will be of interest to archaeologists, geologists, marine scientists, palaeoanthropologists, cultural heritage managers, geographers, and all those with an interest in the drowned landscapes of the continental shelf.

Biomimetics. Advancing Nanobiomaterials and Tissue Engineering

Murugan Ramalingam

This book compiles all aspects of biomimetics from fundamental principles to current technological advances and their future trends in the development of nanoscale biomaterials and tissue engineering. The scope of this book is principally confined to biologically-inspired design of materials and systems for the development of next generation nanobiomaterials and tissue engineering. The book addresses the state-of-the-art of research progress in the applications of the principles, processes, and techniques of biomimetics. The prospective outcomes of current advancements and challenges in biomimetic approaches are also presented.

Microsurgery in Endodontics

Syngcuk Kim

Microsurgery in Endodontics provides the definitive reference to endodontic microsurgery, with instructive photographs and illustrations. Provides a definitive reference work on endodontic microsurgery Includes contributions from pioneers and innovators in the field of microsurgical endodontics Describes techniques for a wide range of microsurgical procedures Includes more than 600 instructive illustrations and photographs

Fundamentals of Ionizing Radiation Dosimetry

Pedro Andreo

A new, comprehensively updated edition of the acclaimed textbook by F.H. Attix (Introduction to Radiological Physics and Radiation Dosimetry) taking into account the substantial developments in dosimetry since its first edition. This monograph covers charged and uncharged particle interactions at a level consistent with the advanced use of the Monte Carlo method in dosimetry; radiation quantities, macroscopic behaviour and the characterization of radiation fields and beams are covered in detail. A number of chapters include addenda presenting derivations and discussions that offer new insight into established dosimetric principles and concepts. The theoretical aspects of dosimetry are given in the comprehensive chapter on cavity theory, followed by the description of primary measurement standards, ionization chambers, chemical dosimeters and solid state detectors. Chapters on applications include reference dosimetry for standard and small fields in radiotherapy, diagnostic radiology and interventional procedures, dosimetry of unsealed and sealed radionuclide sources, and neutron beam dosimetry. The topics are presented in a logical, easy-to-follow sequence and the text is supplemented by numerous illustrative diagrams, tables and appendices. For senior undergraduate- or graduate-level students and professionals.

Basics of Dental Technology. A Step by Step Approach

Tony Johnson

Now available in a second edition, Basics of Dental Technology is a complete reference for the current techniques and materials used in dental technology. Retains the accessible, task-based approach and step-by-step guidance of the first edition Features updates throughout, as well as a new chapter on digital dental technology and an interactive student website to support self-assessment Explains key competencies, concepts, instruments, and equipment, and also introduces more specialist techniques and procedures, such as denture prosthetics, fixed prosthodontics and orthodontic work Provides essential information for trainee dental technicians and students learning about dental technology, including study tips and strategies for working effectively within a dental team

CO2 Biofixation by Microalgae. Modeling, Estimation and Control

Didier Dumur

Due to the consequences of globa l warming and significant greenhouse gas emissions, several ideas have been studied to reduce these emissions or to suggest solut ions for pollutant remov al. The most promising ideas are reduced consumption, waste recovery and waste treatment by biological systems. In this latter category, studies have demonstrated that the use of microalgae is a very promising solution for the biofixation of carbon dioxide. In fact, these micro-organisms are able to offset high levels of CO2 thanks to photosynthesis. Microalgae are also used in various fields (food industry, fertilizers, biofuel, etc.). To obtain a n optimal C O2 sequestration us ing micr oal gae, their cul tivatio n has to be c arried ou t in a f avorable e nvironment, corresponding to optimal operating conditions (temperature, nutrients, pH, light, etc.). Therefore, microalgae are grown in an enclosure, i.e. photobioreactors, which notably operate in continuous mode. This type of closed reactor notably enables us to reduce culture contamination, to improve CO2 transfer and to better control the cultivation system. This last point involves the regulation of concentrations (biomass, substrate or by-product) in addition to conventional regulations (pH, temperature). To do this, we have to establish a model of the system and to identify its parameters; to put in place estimators in order to rebuild variables that are not measured online (software sensor); and finally to implement a control law, in order to maintain the system in optimal conditions despite modeling errors and environmental disturbances that can have an influence on the system (pH variations, temperature, light, biofilm appearance, etc.).