Название | The Phase Rule and Its Applications |
---|---|
Автор произведения | Alexander Findlay |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 4057664595713 |
In order to define the state of the system completely, it will be necessary to have as many equations as there are variables. If, therefore, there are fewer equations than there are variables, then, according to the deficiency in the number of the equations, one or more of the variables will have an undefined value; and values must be assigned to these variables before the system is entirely defined. The number of these undefined values gives us the variability or the degree of freedom of the system.
The equations by which the system is to be defined are obtained from the relationship between the potential of a component and the composition of the phase, the temperature and the pressure. Further, as has already been stated, equilibrium occurs when the potential of each component is the same in the different phases in which it is present. If, therefore, we choose as standard one of the phases in which all the components occur, then in any other phase in equilibrium with it, the potential of each component must be the same as in the standard phase. For each phase in equilibrium with the standard phase, therefore, there will be a definite equation of state for each component in the phase; so that, if there are P phases, we obtain for each component (P - 1) equations; and for C components, therefore, we obtain C(P - 1) equations.
But we have seen above that there are P(C - 1) + 2 variables, and as we have only C(P - 1) equations, there must be P(C - 1) + 2 - C(P - 1) = C + 2 - P variables undefined. That is to say, the degree of freedom (F) of a system consisting of C components in P phases is—
F = C + 2 - P
CHAPTER III
TYPICAL SYSTEMS OF ONE COMPONENT
A. Water.
For the sake of rendering the Phase Rule more readily intelligible, and at the same time also for the purpose of obtaining examples by which we may illustrate the general behaviour of systems, we shall in this chapter examine in detail the behaviour of several well-known systems consisting of only one component.
The most familiar examples of equilibria in a one-component system are those furnished by the three phases of water, viz. ice, water, water vapour. The system consists of one component, because all three phases have the same chemical composition, represented by the formula H2O. As the criterion of equilibrium we shall choose a definite pressure, and shall study the variation of the pressure with the temperature; and for the purpose of representing the relationships which we obtain we shall employ a temperature-pressure diagram, in which the temperatures are measured as abscissæ and the pressures as ordinates. In such a diagram invariant systems will be represented by points; univariant systems by lines, and bivariant systems by areas.
Equilibrium between Liquid and Vapour. Vaporization Curve.—Consider in the first place the conditions for the coexistence of liquid and vapour. According to the Phase Rule (p. 16), a system consisting of one component in two phases has one degree of freedom, or is univariant. We should therefore expect that it will be possible for liquid water to coexist with water vapour at different values of temperature and pressure, but that if we arbitrarily fix one of the variable factors, pressure, temperature, or volume (in the case of a given mass of substance), the state of the system will then be defined. If we fix, say, the temperature, then the pressure will have a definite value; or if we adopt a certain pressure, the liquid and vapour can coexist only at a certain definite temperature. Each temperature, therefore, will correspond to a definite pressure; and if in our diagram we join by a continuous line all the points indicating the values of the pressure corresponding to the different temperatures, we shall obtain a curve (Fig. 1) representing the variation of the pressure with the temperature. This is the curve of vapour pressure, or the vaporization curve of water.
Fig. 1.
Now, the results of experiment are quite in agreement with the requirements of the Phase Rule, and at any given temperature the system water—vapour can exist in equilibrium only under a definite pressure.
The vapour pressure of water at different temperatures has been subjected to careful measurement by Magnus,[22] Regnault,[23] Ramsay and Young,[24] Juhlin,[25] Thiesen and Scheel,[26] and others. In the following table the values of the vapour pressure from -10° to +100° are those calculated from the measurements of Regnault, corrected by the measurements of Wiebe and Thiesen and Scheel;[27] those from 120° to 270° were determined by Ramsay and Young, while the values of the critical pressure and temperature are those determined by Battelli.[28]
Vapour Pressure of Water.
Temperature. | Pressure in cm. mercury. | Temperature. | Pressure in cm. mercury. |
-10° | 0.213 | 120° | 148.4 |
0° | 0.458[29] | 130° | 201.9 |
+20° | 1.752 | 150° | 356.8 |
40° | 5.516 | 200° | 1162.5 |
60° | 14.932 | 250° | 2973.4 |
80° | 35.54 | 270° | 4110.1 |
100° | 76.00 | 364.3° (critical temperature) | 14790.4 (194.6 atm.) (critical pressure). |
The pressure is, of course, independent of the relative or absolute volumes of the liquid and vapour; on increasing the volume at constant temperature, a certain amount of the liquid will pass into vapour, and the pressure will regain its former value. If, however, the pressure be permanently maintained at a value different from that corresponding to the temperature employed, then either all the liquid will pass into vapour, or all the vapour will pass into liquid, and we shall have either vapour alone or liquid alone.
Upper Limit of Vaporization Curve.—On continuing to add heat to water contained in a closed vessel, the pressure of the vapour will gradually increase. Since with increase of pressure the density of the vapour must increase, and since with rise of temperature the density of the liquid must decrease, a point will be reached at which the density of liquid and vapour become identical; the system ceases to be heterogeneous, and passes into one homogeneous phase. The temperature at which this occurs is called the critical temperature. To this temperature there will, of course, correspond a certain definite pressure, called the critical pressure. The curve representing the equilibrium between liquid and vapour must, therefore, end abruptly at the critical point. At temperatures above this point no pressure, however