Название | The Phase Rule and Its Applications |
---|---|
Автор произведения | Alexander Findlay |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 4057664595713 |
The triple point is not only the point of intersection of the vaporization and sublimation curves, but it is also the end-point of the fusion curve. The fusion curve, as we have seen, is the curve of equilibrium between ice and water; and since at the triple point ice and water are each in equilibrium with vapour of the same pressure, they must, of course, also be in equilibrium with one another.
Fig. 4.
Bivariant Systems of Water.—If we examine Fig. 4, we see that the curves OA, OB, OC, which represent diagrammatically the conditions under which water and vapour, ice and vapour, and water and ice are in equilibrium, form the boundaries of three "fields," or areas, I., II., III. These areas, now, represent the conditions for the existence of the single phases, solid, liquid, and vapour respectively. At temperatures and pressures represented by any point in the field I., solid only can exist as a stable phase. Since we have here one component in only one phase, the system is bivariant, and at any given temperature, therefore, ice can exist under a series of pressures; and under any given pressure, at a series of temperatures, these pressures and temperatures being limited only by the curves OB, OC. Similarly also with the areas II. and III.
We see, further, that the different areas are the regions of stability of the phase common to the two curves by which the area is enclosed.[37] Thus, the phase common to the two systems represented by BO (ice and vapour), and OA (water and vapour) is the vapour phase; and the area BOA is therefore the area of the vapour phase. Similarly, BOC is the area of the ice phase, and COA the area of the water phase.
Supercooled Water. Metastable State.—When heated under the ordinary atmospheric pressure, ice melts when the temperature reaches 0°, and it has so far not been found possible to raise the temperature of ice above this point without liquefaction taking place. On the other hand, it has long been known that water can be cooled below zero without solidification occurring. This was first discovered in 1724 by Fahrenheit,[38] who found that water could be exposed to a temperature of -9.4° without solidifying; so soon, however, as a small particle of ice was brought in contact with the water, crystallization commenced. Superfused or supercooled water—i.e. water cooled below 0°—is unstable only in respect of the solid phase; so long as the presence of the solid phase is carefully avoided, the water can be kept for any length of time without solidifying, and the system supercooled water and vapour behaves in every way like a stable system. A system, now, which in itself is stable, and which becomes instable only in contact with a particular phase, is said to be metastable, and the region throughout which this condition exists is called the metastable region. Supercooled water, therefore, is in a metastable condition. If the supercooling be carried below a certain temperature, solidification takes place spontaneously without the addition of the solid phase; the system then ceases to be metastable, and becomes instable.
Not only has water been cooled to temperatures considerably below the melting point of ice, but the vapour pressure of the supercooled water has been measured. It is of interest and importance, now, to see what relationship exists between the vapour pressure of ice and that of supercooled water at the same temperature. This relationship is clearly shown by the numbers in the following table,[39] and is represented in Fig. 3, p. 27., and diagrammatically in Fig. 4, the vapour pressures of supercooled water being represented by the curve OA′, which is the unbroken continuation of AO.
Vapour Pressure of Ice and of Supercooled Water.
Temperature. | Pressure in mm. mercury. | ||
Water. | Ice. | Difference. | |
0° | 4.618 | 4.602 | 0.016[40] |
-2° | 3.995 | 3.925 | 0.070 |
-4° | 3.450 | 3.334 | 0.116 |
-8° | 2.558 | 2.379 | 0.179 |
-10° | 2.197 | 1.999 | 0.198 |
-15° | 1.492 | 1.279 | 0.213 |
-20° | 1.005 | 0.806 | 0.199 |
At all temperatures below 0° (more correctly +0.0076°), at which temperature water and ice have the same vapour pressure, the vapour pressure of supercooled water is greater than that of ice at the same temperature.
From the relative positions of the curves OB and OA (Fig. 4) we see that at all temperatures above 0°, the (metastable) sublimation curve of ice, if it could be obtained, would be higher than the vaporization curve of water. This shows, therefore, that at 0° a "break" must occur in the curve of states, and that in the neighbourhood of this break the curve above that point must ascend less rapidly than the curve below the break. Since, however, the differences in the vapour pressures of supercooled water and of ice are very small, the change in the direction of the vapour-pressure curve on passing from ice to water was at first not observed, and Regnault regarded the sublimation curve as passing continuously into the vaporization curve. The existence of a break was, however, shown by James Thomson[41] and by Kirchhoff[42] to be demanded by thermo-dynamical considerations, and the prediction of theory was afterwards realized experimentally by Ramsay and Young in their determinations of the vapour pressure of water and ice, as well as in the case of other substances.[43]
From what has just been said, we can readily understand why ice and water cannot exist in equilibrium below 0°. For, suppose we have ice and water in the same closed space, but not in contact with one another, then since the vapour pressure of the supercooled water is higher than that of ice, the vapour of the former must be supersaturated in contact with the latter; vapour must, therefore, condense on the ice; and in this way there will be a slow distillation from the water to the ice, until at last all the water will have disappeared, and only ice and vapour remain.[44]
Other Systems of the Substance Water.—We have thus far discussed only those systems which are constituted by the three phases—ice, water, and water vapour. It has, however, been recently found that at a low temperature and under a high pressure ordinary ice can pass into two other crystalline varieties, called by Tammann[45] ice II. and ice III., ordinary ice being ice I. According to the Phase Rule, now, since each of these solid forms constitutes a separate phase (p. 9), it will be possible to have the following (and more) systems of water, in addition to those already studied, viz. water, ice I., ice II.; water, ice I., ice III.; water, ice II., ice III., forming invariant systems and existing in equilibrium only at a definite triple point; further, water, ice II.; water, ice III.; ice I., ice II.; ice I., ice III.; ice II.,