Design and Development of Efficient Energy Systems. Группа авторов

Читать онлайн.
Название Design and Development of Efficient Energy Systems
Автор произведения Группа авторов
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119761792



Скачать книгу

The longest path arrival time form input to pin p[30] is 5476 ps shown in Table 2.8.

      Vedic multiplier replaces the underlying cell by compressors logic, made up of adder block. Utilization of compressor greatly reduces the wiring resource save area. The leakage power of the Vedic multiplier is larger than other compare multipliers but shows very low dynamic power consumption. Dadda multiplier requires maximum power to reduce the delay 2.56ns. A Vedic multiplier attains significant reduction in dynamic power requirement and delay of multiplication architecture. Cell count of VM is 139 which is much smaller than other multipliers.

      2.4.5 Applications of Multiplier

      The present work Vedic multiplier finds application to implement the architecture of the following [21–25]

      1 1) High-speed signal processing

      2 2) DSP based application

      3 3) DWT and DCT transformation

      4 4) FIT and IIR filter

      5 5) Multirate signal processing

      6 6) Up-Down converters

      7 7) Multiply - Accumulate unit

      An efficient productive strategy for multiplication based on Urdhva Tiryakbhyam Sutra (Algorithm) in view of Vedic mathematics is implemented in this paper with Verilog HDL. Here a fast 8-bit multiplier is implemented that incorporates architecture of compressor. Compressor is a derived structure of full adder and half adder, map multiple input to lesser number of output signals. Hierarchical multiplier structure and shows the computational speed by offered by Vedic methods. Essential inspiration of this work is to decrease the delay in complex multiplication achieve 2.637 ns. We can deduce that the compressor-based architecture of Vedic math’s multiplier is more favorable than conventional multipliers and preferred in complex algorithm implementation. Hence, we have concluded that Instance Power usage of 8x8 Vedic Multiplier is 40.48% and 16x16 Vedic Multiplier is 62.22%. The Net Power usage of 8x8 Vedic Multiplier is 82.24%, and the 16x16 Vedic Multiplier is 86.85%.

      1. Thapliyal, H., & Arabnia, H. R. (2004, June). A Time-Area-Power Efficient Multiplier and Square Architecture Based on Ancient Indian Vedic Mathematics. In ESA/VLS, 2004I (pp. 434-439).

      2. Ciminiera, L., & Valenzano, A. (1988). Low-cost serial multipliers for high-speed specialized processors. The Proceedings IEEE (Computers and Digital Techniques), 135(5), 259-265.

      3. Hsiao, S. F., Jiang, M. R., & Yeh, J. S. (1998). Design of high-speed low-power 3-2 counter and 4-2 compressor for fast multipliers. Electronics Letters, 34(4), 341-343.

      4.. Ramalatha, M., Dayalan, K. D., Dharani, P., & Priya, S. D. (2009, July). High-speed energy efficient ALU design using Vedic multiplication techniques. In International Conference on Advances in Computational Tools for Engineering Applications, 2009, IEEE (pp. 600-603).

      5. Tiwari, H. D., Gankhuyag, G., Kim, C. M., & Cho, Y. B. (2008, November). Multiplier design based on ancient Indian Vedic Mathematics. In International SoC Design Conference, 2008, IEEE (Vol. 2, pp. II-65).

      6. Ma, W., & Li, S. (2008, October). A new high compression compressor for large multiplier. In 9th International Conference on Solid-State and Integrated-Circuit Technology. 2008, IEEE (pp. 1877-1880).

      7. Chandrakasan, A. P., Bowhill, W. J., & Fox, F. (2000). Design of high-performance microprocessor circuits. Wiley-IEEE Press.

      8. Radhakrishnan, D., & Preethy, A. P. (2000, August). Low power CMOS pass logic 4-2 compressor for high-speed multiplication. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat. No. CH37144). 2000, IEEE (Vol. 3, pp. 1296-1298).

      9. Mutoh, S. I., Douseki, T., Matsuya, Y., Aoki, T., Shigematsu, S., & Yamada, J. (1995). 1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS. IEEE Journal of Solid-state Circuits, 30(8), 847-854.

      11. Tiwari, H. D., Gankhuyag, G., Kim, C. M., & Cho, Y. B. (2008, November). Multiplier design based on ancient Indian Vedic Mathematics. In International SoC Design Conference. 2008, IEEE (Vol. 2, pp. II-65).

      12. Dandapat, A., Ghosal, S., Sarkar, P., & Mukhopadhyay, D. (2010). A 1.2-ns16× 16-bit binary multiplier using high speed compressors. International Journal of Electrical and Electronics Engineering, 4(3), 234-239.

      13. Swee, K. L. S., & Hiung, L. H. (2012, June). Performance comparison review of 32-bit multiplier designs. In 4th International Conference on Intelligent and Advanced Systems (ICIAS2012). 2012, IEEE (Vol. 2, pp. 836-841).

      14. Radhakrishnan, D., & Preethy, A. P. (2000, August). Low power CMOS pass logic 4-2 compressor for high-speed multiplication. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat. No. CH37144). 2000, IEEE (Vol. 3, pp. 1296-1298).

      15. Ram, G. C., Lakshmanna, Y. R., Rani, D. S., & Sindhuri, K. B. (2016, March). Area efficient modified vedic multiplier. In International Conference on Circuit, Power and Computing Technologies (ICCPCT). 2006, IEEE (pp. 1-5).

      16. Prabhu, E., Mangalam, H., & Gokul, P. R. (2019). A delay efficient vedic multiplier. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 89(2), 257-268.

      17. Dutta, K., Chattopadhyay, S., Biswas, V., & Ghatak, S. R. (2019, November). Design of Power Efficient Vedic Multiplier using Adiabatic Logic. In International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2019, IEEE (pp. 1-6).\

      18. Shukla, V., Singh, O. P., Mishra, G. R., & Tiwari, R. K. (2020). A Novel Approach for Reversible Realization of 4× 4 Bit Vedic Multiplier Circuit. In Advances in VLSI, Communication, and Signal Processing, 2020, Springer, Singapore, (pp. 733-745).

      19. Karthikeyan, S., & Jagadeeswari, M. (2020). Performance improvement of elliptic curve cryptography system using low power, high speed 16× 16 Vedic multiplier based on reversible logic. Journal of Ambient Intelligence and Humanized Computing, 1-10.

      20. Koul, R., Yadav, M., & Suneja, K. (2020). Novel FPGA-Based Hardware Design of Canonical Signed Digit Matrix Multiplier and Its Comparative Analysis with Other Multipliers. In International Conference on Artificial Intelligence: Advances and Applications 2019, Springer, Singapore (pp. 65-75).

      21. Kyaw, K. Y., Goh, W. L., & Yeo, K. S. (2010, December). Low-power high-speed multiplier for error-tolerant application. In International Conference of Electron Devices and Solid-State Circuits (EDSSC), 2010, IEEE (pp. 1-4).

      22. Raju, B. R., & Satish, D. V. (2013). A high speed 16* 16 multiplier based on Urdhva Tiryakbhyam Sutra. International Journal of Science Engineering and Advance Technology, IJSEAT, 1(5), 126-132.

      23. Panda, S. K., Das, R., & Sahoo, T. R. (2015). VLSI implementation of vedic multiplier