Различные книги в жанре Программы

The Digital Agricultural Revolution

Группа авторов

THE DIGITAL AGRICULTURAL REVOLUTION The book integrates computational intelligence, applied artificial intelligence, and modern agricultural practices and will appeal to scientists, agriculturists, and those in plant and crop science management. There is a need for synergy between the application of modern scientific innovation in the area of artificial intelligence and agriculture, considering the major challenges from climate change consequences viz. rising temperatures, erratic rainfall patterns, the emergence of new crop pests, drought, flood, etc. This volume reports on high-quality research (theory and practice including prototype & conceptualization of ideas, frameworks, real-world applications, policy, standards, psychological concerns, case studies, and critical surveys) on recent advances toward the realization of the digital agriculture revolution as a result of the convergence of different disruptive technologies. The book touches upon the following topics which have contributed to revolutionizing agricultural practices. Applications of Artificial Intelligence in Agriculture [/b](AI models and architectures, system design, real-world applications of AI, machine learning and deep learning in the agriculture domain, integration & coordination of systems and issues & challenges). IoT and Big Data Analytics Applications in Agriculture (theory & architecture and the use of various types of sensors in optimizing agriculture resources and final product, benefits in real-time for crop acreage estimation, monitoring & control of agricultural produce). Robotics & Automation in Agriculture Systems (Automation challenges, need and recent developments and real case studies). Intelligent and Innovative Smart Agriculture Applications (use of hybrid intelligence in better crop health and management). Privacy, Security, and Trust in Digital Agriculture (government framework & policy papers). Open Problems, Challenges, and Future Trends. Audience Researchers in computer science, artificial intelligence, electronics engineering, agriculture automation, crop management, and science.

Beginning Programming All-in-One For Dummies

Wallace Wang

Let there be code! Beginning Programming All-in-One For Dummies offers one guide packed with 7 books to teach you programming across multiple languages. Coding can seem complex and convoluted, but Dummies makes it simple and easy to understand. You’ll learn all about the principles of programming, algorithms, data structures, debugging programs, unique applications of programming and more while learning about some of the most popular programming languages used today. Move confidently forward in your computer science coursework or straight into the workforce. You’ll come away with a rock-solid foundation in the programming basics, using data, coding for the web, and building killer apps. Learn the basics of coding, including writing and compiling code, using algorithms, and data structures Get comfortable with the syntax of several different programming languages Wrap your mind around interesting programming opportunities such as conducting biological experiments within a computer or programming a video game engine Develop cross-platform applications for desktop and mobile devicesThis essential guide takes the complexity and convolution out of programming for beginners and arms you with the knowledge you need to follow where the code takes you.

Advanced Analytics and Deep Learning Models

Группа авторов

Advanced Analytics and Deep Learning Models The book provides readers with an in-depth understanding of concepts and technologies related to the importance of analytics and deep learning in many useful real-world applications such as e-healthcare, transportation, agriculture, stock market, etc. Advanced analytics is a mixture of machine learning, artificial intelligence, graphs, text mining, data mining, semantic analysis. It is an approach to data analysis. Beyond the traditional business intelligence, it is a semi and autonomous analysis of data by using different techniques and tools. However, deep learning and data analysis both are high centers of data science. Almost all the private and public organizations collect heavy amounts of data, i.e., domain-specific data. Many small/large companies are exploring large amounts of data for existing and future technology. Deep learning is also exploring large amounts of unsupervised data making it beneficial and effective for big data. Deep learning can be used to deal with all kinds of problems and challenges that include collecting unlabeled and uncategorized raw data, extracting complex patterns from a large amount of data, retrieving fast information, tagging data, etc. This book contains 16 chapters on artificial intelligence, machine learning, deep learning, and their uses in many useful sectors like stock market prediction, a recommendation system for better service selection, e-healthcare, telemedicine, transportation. There are also chapters on innovations and future opportunities with fog computing/cloud computing and artificial intelligence. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in healthcare, telemedicine, transportation, and the financial sector. The book will also be a great source for software engineers and advanced students who are beginners in the field of advanced analytics in deep learning.