The Story of the Heavens. Robert S. Ball

Читать онлайн.
Название The Story of the Heavens
Автор произведения Robert S. Ball
Жанр Языкознание
Серия
Издательство Языкознание
Год выпуска 0
isbn 4064066121693



Скачать книгу

great philosopher's name has been attached to a grand crater 50 miles in diameter, the interior of which, although very hilly, shows no decidedly marked central cone. But the lofty wall of the crater, exceeding 10,500 feet in height, overshadows the floor so continuously that its features are never seen to advantage.

      4. The Great Valley of the Alps.—A wonderfully straight valley, with a width ranging from 3-1⁄2 to 6 miles, runs right through the lunar Alps. It is, according to Mädler, at least 11,500 feet deep, and over 80 miles in length. A few low ridges which are parallel to the sides of the valley may possibly be the result of landslips.

      5. Aristillus.—Under favourable conditions Lord Rosse's great telescope has shown the exterior of this magnificent crater to be scored with deep gullies radiating from its centre. Aristillus is about 34 miles wide and 10,000 feet in depth.

      6. Autolycus is somewhat smaller than the foregoing, to which it forms a companion in accordance with what Mädler thought a well-defined relation amongst lunar craters, by which they frequently occurred in pairs, with the smaller one more usually to the south. Towards the edge this arrangement is generally rather apparent than real, and is merely a result of foreshortening.

      7. Archimedes.—This large plain, about 50 miles in diameter, has its vast smooth interior divided by unequally bright streaks into seven distinct zones, running east and west. There is no central mountain or other obvious internal sign of former activity, but its irregular wall rises into abrupt towers, and is marked outside by decided terraces.

       PLATE B. PORTION OF THE MOON. PLATE B. PORTION OF THE MOON. (ALPS, ARCHIMEDES, APENNINES.) Messrs. Loewy & Puiseux.

      8. Plato.—We have already referred to this extensive circular plain, which is noticeable with the smallest telescope. The average height of the rampart is about 3,800 feet on the eastern side; the western side is somewhat lower, but there is one peak rising to the height of nearly 7,300 feet. The plain girdled by this vast rampart is of ample proportions. It is a somewhat irregular circle, about 60 miles in diameter, and containing an area of 2,700 square miles. On its floor the shadows of the western wall are shown in Plate IX., as are also three of the small craters, of which a large number have been detected by persevering observers. The narrow sharp line leading from the crater to the left is one of those remarkable "clefts" which traverse the moon in so many directions. Another may be seen further to the left. Above Plato are several detached mountains, the loftiest of which is Pico, about 8,000 feet in height. Its long and pointed shadow would at first sight lead one to suppose that it must be very steep; but Schmidt, who specially studied the inclinations of the lunar slopes, is of opinion that it cannot be nearly so steep as many of the Swiss mountains that are frequently ascended. As many as thirty minute craters have been carefully observed on the floor of Plato, and variations have been thought by Mr. W.H. Pickering to be perceptible.

      9. Eratosthenes.—This profound crater, upwards of 37 miles in diameter, lies at the end of the gigantic range of the Apennines. Not improbably, Eratosthenes once formed the volcanic vent for the stupendous forces that elevated the comparatively craterless peaks of these great mountains.

      10. Copernicus.—Of all the lunar craters this is one of the grandest and best known. The region to the west is dotted over with innumerable minute craterlets. It has a central many-peaked mountain about 2,400 feet in height. There is good reason to believe that the terracing shown in its interior is mainly due to the repeated alternate rise, partial congelation, and subsequent retreat of a vast sea of lava. At full moon the crater of Copernicus is seen to be surrounded by radiating streaks.

      

      11. Kepler.—Although the internal depth of this crater is scarcely less than 10,000 feet, it has but a very low surrounding wall, which is remarkable for being covered with the same glistening substance that also forms a system of bright rays not unlike those surrounding the last object.

      12. Aristarchus is the most brilliant of the lunar craters, being specially vivid with a low power in a large telescope. So bright is it, indeed, that it has often been seen on the dark side just after new moon, and has thus given rise to marvellous stories of active lunar volcanoes. To the south-east lies another smaller crater, Herodotus, north of which is a narrow, deep valley, nowhere more than 2-1⁄2 miles broad, which makes a remarkable zigzag. It is one of the largest of the lunar "clefts."

      13. Grimaldi calls for notice as the darkest object of its size in the moon. Under very exceptional circumstances it has been seen with the naked eye, and as its area has been estimated at nearly 14,000 square miles, it gives an idea of how little unaided vision can discern in the moon; it must, however, be added that we always see Grimaldi considerably foreshortened.

      14. The great crater Gassendi has been very frequently mapped on account of its elaborate system of "clefts." At its northern end it communicates with a smaller but much deeper crater, that is often filled with black shadow after the whole floor of Gassendi has been illuminated.

      15. Schickard is one of the largest walled plains on the moon, about 134 miles in breadth. Within its vast expanse Mädler detected 23 minor craters. With regard to this object Chacornac pointed out that, owing to the curvature of the surface of the moon, a spectator at the centre of the floor "would think himself in a boundless desert," because the surrounding wall, although in one place nearly 10,000 feet high, would lie entirely beneath his horizon.

      16. Close to the foregoing is Wargentin. There can be little doubt that this is really a huge crater almost filled with congealed lava, as there is scarcely any fall towards the interior.

      

      17. Clavius.—Near the 60th parallel of lunar south latitude lies this enormous enclosure, the area of which is not less than 16,500 square miles. Both in its interior and on its walls are many peaks and secondary craters. The telescopic view of a sunrise upon the surface of Clavius is truly said by Mädler to be indescribably magnificent. One of the peaks rises to a height of 24,000 feet above the bottom of one of the included craters. Mädler even expressed the opinion that in this wild neighbourhood there are craters so profound that no ray of sunlight ever penetrated their lowest depths, while, as if in compensation, there are peaks whose summits enjoy a mean day almost twice as long as their night.

      18. If the full moon be viewed through an opera-glass or any small hand-telescope, one crater is immediately seen to be conspicuous beyond all others, by reason of the brilliant rays or streaks that radiate from it. This is the majestic Tycho, 17,000 feet in depth and 50 miles in diameter (Plate X.). A peak 6,000 feet in height rises in the centre of its floor, while a series of terraces diversity its interior slopes; but it is the mysterious bright rays that chiefly surprise us. When the sun rises on Tycho, these streaks are utterly invisible; indeed, the whole object is then so obscure that it requires a practised eye to recognise Tycho amidst its mountainous surroundings. But as soon as the sun has attained a height of about 30° above its horizon, the rays emerge from their obscurity and gradually increase in brightness until the moon becomes full, when they are the most conspicuous objects on her surface. They vary in length, from a few hundred miles to two or, in one instance, nearly three thousand miles. They extend indifferently across vast plains, into the deepest craters, or over the loftiest elevations. We know of nothing on our earth to which they can be compared. As these rays are only seen about the time of full moon, their visibility obviously depends on the light falling more or less closely in the line of sight, quite regardless of the inclination of the surfaces, mountains or valleys, on which they appear. Each small portion of the surface of the streak must therefore be of a form which is symmetrical to the spectator from whatever point it is seen. The sphere alone appears to fulfil this condition, and Professor Copeland therefore suggests that the material constituting the surface of the streak must be made up of a large number of more or less completely spherical globules. The streaks must represent