Название | The Story of the Heavens |
---|---|
Автор произведения | Robert S. Ball |
Жанр | Языкознание |
Серия | |
Издательство | Языкознание |
Год выпуска | 0 |
isbn | 4064066121693 |
We have accumulated by observation a great number of facts concerning the sun, but when we try to draw from these facts conclusions as to the physical constitution of that great body, it cannot be denied that the difficulties seem to be very great indeed. We find that the best authorities differ considerably in the opinions they entertain as to its nature. We shall here set forth the principal conclusions as to which there is little or no controversy.
We shall see in a following chapter that astronomers have been able to determine the relative densities of the bodies in the solar system; in other words, they have found the relation between the quantities of matter contained in an equally large volume of each. It has thus been ascertained that the average density of the sun is about a quarter that of the earth. If we compare the weight of the sun with that of an equally great globe of water, we find that the luminary would be barely one and a half times as heavy as the water. Of course, the actual mass of the sun is very enormous; it is no less than 330,000 times as great as that of the earth. The solar material itself is, however, relatively light, so that the sun is four times as big as it would have to be if, while its weight remained the same, its density equalled that of the earth. Bearing in mind this lightness of the sun, and also the exceedingly high temperature which we know to prevail there, no other conclusion seems possible than that the body of the sun must be in a gaseous state. The conditions under which such gases exist in the sun are, no doubt, altogether different from those with which we are acquainted on the earth. At the surface of the sun the force of gravity is more than twenty-seven times as great as it is on the earth. A person who on the earth could just lift twenty-seven equal pieces of metal would, if he were transferred to the sun, only be able to lift one of the pieces at a time. The pressure of the gases below the surface must therefore be very great, and it might be supposed that they would become liquefied in consequence. It was, however, discovered by Andrews that so long as a gas is kept at a temperature higher than a certain point, known as the "critical temperature" (which is different for different gases), the gas will not be turned into a liquid however great be the pressure to which it is submitted. The temperature on the sun cannot be lower than the critical temperatures of the gases there existing; so it would seem that even the enormous pressure can hardly reduce the gases in the great luminary to the liquid form.
Of the interior of the sun we can, of course, expect to learn little or nothing. What we observe is the surface-layer, the so-called photosphere, in which the cold of space produces the condensation of the gases into those luminous clouds which we see in our drawings and photographs as "rice grains" or "willow leaves." It has been suggested by Dr. Johnstone Stoney (and afterwards by Professor Hastings, of Baltimore) that these luminous clouds are mainly composed of carbon with those of the related elements silicon and boron, the boiling points of which are much higher than those of other elements which might be considered likely to form the photospheric clouds. The low atomic weight of carbon must also have the effect of giving the molecules of this element a very high velocity, and thereby enabling them to work their way into the upper regions, where the temperature has so fallen that the vapour becomes chilled into cloud. A necessary consequence of the rapid cooling of these clouds, and the consequent radiation of heat on a large scale, would be the formation of what we may perhaps describe as smoke, which settles by degrees through the intervals between the clouds (making these intervals appear darker) until it is again volatilised on reaching a level of greater heat below the clouds. This same smoke is probably the cause of the well-known fact that the solar limb is considerably fainter than the middle of the disc. This seems to arise from the greater absorption caused by the longer distance which a ray of light from a point near the limb has to travel through this layer of smoke before reaching the earth. It is shown that this absorption cannot be attributed to a gaseous atmosphere, since this would have the effect of producing more dark absorption lines in the spectrum. There would thus be a marked difference between the solar spectrum from a part near the middle of the disc and the spectrum from a part near the limb. This, however, we do not find to be the case.
With regard to the nature of sun-spots, the idea first suggested by Secchi and Lockyer, that they represent down rushes of cooler vapours into the photosphere (or to its surface), seems on the whole to accord best with the observed phenomena. We have already mentioned that the spots are generally accompanied by faculæ and eruptive prominences in their immediate neighbourhood, but whether these eruptions are caused by the downfall of the vapour which makes the photospheric matter "splash up" in the vicinity, or whether the eruptions come first, and by diminishing the upward pressure from below form a "sink," into which overlying cooler vapour descends, are problems as to which opinions are still much divided.
A remarkable appendage to the sun, which extends to a distance very much greater than that of the corona, produces the phenomenon of the zodiacal light. A pearly glow is sometimes seen in the spring to spread over a part of the sky in the vicinity of the point where the sun has disappeared after sunset. The same spectacle may also be witnessed before sunrise in the autumn, and it would seem as if the material producing the zodiacal light, whatever it may be, had a lens-shaped form with the sun in the centre. The nature of this object is still a matter of uncertainty, but it is probably composed of a kind of dust, as the faint spectrum it affords is of a continuous type. A view of the zodiacal light is shown in Fig. 22.
In all directions the sun pours forth, with the most prodigal liberality, its torrents of light and of heat. The earth can only grasp the merest fraction, less than the 2,000,000,000th part of the whole. Our fellow planets and the moon also intercept a trifle; but how small is the portion of the mighty flood which they can utilise! The sip that a flying swallow takes from a river is as far from exhausting the water in the river as are the planets from using all the heat which streams from the sun.
The sun's gracious beams supply the magic power that enables the corn to grow and ripen. It is the heat of the sun which raises water from the ocean in the form of vapour, and then sends down that vapour as rain to refresh the earth and to fill the rivers which bear our ships down to the ocean. It is the heat of the sun beating on the large continents which gives rise to the breezes and winds that waft our vessels across the deep; and when on a winter's evening we draw around the fire and feel its invigorating rays, we are only enjoying sunbeams which shone on the earth countless ages ago. The heat in those ancient sunbeams developed the mighty vegetation of the coal period, and in the form of coal that heat has slumbered for millions of years, till we now call it again into activity. It is the power of the sun stored up in coal that urges on our steam-engines. It is the light of the sun stored up in coal that beams from every gaslight in our cities.
For the power to live and move, for the plenty with which we are surrounded, for the beauty with which nature is adorned, we are immediately indebted to one body in the countless hosts of space, and that body is the sun.
CHAPTER III.